Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/25359
標題: | 台灣荷蘭種乳牛GHR與PRL基因單核苷酸多態性之研究 Single Nucleotide Polymorphisms of GHR and PRL Genes of Holstein Friesian Cows in Taiwan |
作者: | 范易栩 Mannankul, Fa-Ich |
關鍵字: | GHR;GHR;PRL;SNP genotyping;Holstein cows;PRL;基因型分析;荷蘭種乳牛 | 出版社: | 動物科學系所 | 引用: | Anthony, R. V., R. Liang, E. P. Kayl and S. L. Pratt. 1995. The growth hormone/prolactin gene family in ruminant placentae. J. Reprod. Fertil. Suppl. 49:83-95. Blott, S., J. J. Kim, S. Moisio, A. Schmidt-Küntzel, A. Cornet, P. Berzi, N. Cambisano, C. Ford, B. Grisart, D. Johnson, L. Karim, P. Simon, R. Snell, R. Spelman, J. Wong, J. Vilkki, M. Georges, F. Farnir and W. Coppieters. 2003. Molecular dissection of a quantitative trait locus: A phenylalanine to tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics. 163(1):253-266. Boettcher, P. J. 2001. 2020 Vision? The future of dairy cattle breeding from an academic perspective. J. Dairy Sci. 84(E. Suppl.):E62-E68. Bole-Feysot, C., V. Goffin, M. Edery, N. Binart and P. A. Kelly. 1998. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19:225-268. Brym, P., S. Kamiński and E. Wójcik. 2005. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits. J. Appl. Genet. 45(2):179-185. Chamberlain, J. S., R. A. Gibbs, J. E. Ranier, P. N. Nguyen and C. T. Caskey. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16:11141-11156. Chrenek, P., D. Vasicek, M. Bauerova and J. Bulla. 1998. Simultaneous analysis of bovine growth hormone and prolactin alleles by multiplex PCR and RFLP. Czech J. Anim. Sci. 43:53-55. Chrenek, P., J. Huba, M. Oravcova, L. Hetenyi, D. Peskovicova and J. Bulla. 1999. Genotypes of bGH and bPRL genes in relationships to milk production. EAAP-50th Annual Meeting, Zurich: 40. Chung, E. R., T. J. Rhin and S. K. Han. 1996. Association between PCR RFLP markers of growth hormone and prolactin genes and production traits in dairy cattle. Korean J. Anim. Sci. 38:321-336. Cooke, N. E., D. Coit, R. I. Weiner, J. D. Baxter and J. A. Martial. 1980. Structure of cloned DNA complementary to rat prolactin messenger RNA. J. Biol. Chem. 255(13):6502-6510. Cooke N. E. and S. A. Liebhaber. 1995. Molecular biology of the growth hormone-prolactin gene system. Vitam. Horm. 50:385-459. Cowan, C., M. Dentine, R. Ax and L. Schuler. 1989. Restriction fragment length polymorphism associated with growth hormone and prolactin genes in Holstein bulls: Evidence for new growth hormone allele. Anim. Genet. 20(2):157-165. Dekkers, J. C. M., and F. Hospital. 2002. The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Genet. 3:22-32. Dekkers, J. C. M. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J. Anim. Sci. 82:E313-328. Di Stasio, L., G. Destefanis, A. Brugiapaglia, A. Albera and A. Rolando. 2005. Polymorphism of the GHR gene in cattle and relationships with meat production and quality. J. Anim. Gen. 36:138-140. Dybus, A. 2002. Associations of growth hormone GH and prolactin PRL genes polymorphism with milk production traits in Polish Black and White cattle. Anim. Sci. Pap. Rep. 20:203-212. Edwards, M. C. and R. A. Gibbs. 1994. Multiplex PCR: advantages, development, and applications. Genome Res. 3:S65-S75. Falaki, M., N. Gengler, M. Sneyers, A. Prandi, S. Massart, A. Formigoni, A. Burny, D. Portetelle and R. Renaville. 1996. Relationships of polymorphisms for growth hormone and growth hormone receptor genes with milk production traits for Italian Holstein-Friesian bulls. J. Dairy Sci. 79(8):1446-1453. Fiorentino, F., M. C. Magli, D. Podini, A. P. Ferraretti, A. Nuccitelli, N. Vitale, M. Baldi and L. Gianaroli. 2003. The minisequencing method: an alternative strategy for preimplantation genetic diagnosis of single gene disorders. Mol. Hum. Reprod. 9(7):399-410. Forsyth, I. A. 1986. Variation among species in the endocrine control of mammary growth and function: The roles of prolactin, growth hormone, and placental lactogen. J. Dairy Sci. 69:886-903. Garrett, A. J., G. Rincon, J. F. Medrano, M. A. Elzo, G. A. Silver, and M. G. Thomas. 2008. Promoter region of the bovine growth hormone receptor gene: Single nucleotide polymorphism discovery in cattle and association with performance in Brangus bulls. J. Anim. Sci. 86:3315-3323. Ge, G., C. A. Fernández, M. A. Moses and D. S. Greenspan. 2007. Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc. Natl. Acad. Sci. USA. 104(24):10010-10015. Goffin, V. and P. A. Kelly. 1997. The prolactin/growth hormone receptor family: structure/function relationships. J. Mamm. Gland Biol. Neoplasia. 2:7-18. Halabian, R., N. Morad Pasha Eskandari, N. Mohammad Reza, M. Ali Reza Heravi, H. Seyed Abolfazl and Q. Saber. 2008. Characterization of SNPs of bovine prolcatin gene of Holstein cattle. Biotechnology. 7(1):118-123. Hayashi, K. 1991. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. Genome Res. 1:34-38. Herrington, J., and C. Carter-Su. 2001. Signaling pathways activated by the growth hormone receptor. Trends Endocrinol. Metab.12:252-257. Kalvatchev, Z. and P. Draganov. 2005. Single-strand conformation polymorphism (SSCP) analysis: a rapid and sensitive method for detection of genetic diversity among virus population. Biotechnol. Biotec. Eq. 19(3):9-14. Kamiński, S., P. Brym, A. Ruść, E. Wójcik, A. Ahman and R. Mägi. 2006. Associations between milk performance traits in Holstein cows and 16 candidate SNPs identified by arrayed primer extension (APEX) microarray. Anim. Biotechnol. 17:1-11. Kelly, P. A., J. Djiane, M. C. Postel-Vinay and M. Edery. 1991. The prolactin/growth hormone receptor family. Endocr. Rev. 12:235-251. Kelly, P. A., A. Bachelot, C. Kedzia, L. Hennighausen, C. J. Ormandy, J. J. Kopchick and N. Binart. 2002. The role of prolactin and growth hormone in mammary gland development. Mol. Cell. Endocrinol. 197:127-131. Klitø, N. G., Q. Tan, M. Nyegaard, K. Brusgaard, M. Thomassen, C. Skouboe, J. Dahlgaard and T.A. Kruse. 2007. Arrayed primer extension in the "array of arrays" format: a rational approach for microarray-based SNP genotyping. Genet. Test. 11(2), 160-166. Landergren, U., R. Kaiser, J. Sanders and L. Hood. 1988. A ligase-mediated gene detection technique. Science. 241:1077-1080. Lovmar, L., M. Fredriksson, U. Liljedahl, S. Sigurdsson and A. C. Syvänen. 2003. Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucleic Acids Res. 31(21):e129. Lü, A., X. Hu, H. Chen, J. Jiang, C. Zhang, H. Xu and X. Gao. 2010. Single nucleotide polymorphisms in bovine PRL gene and their associations with milk production traits in Chinese Holsteins. Mol. Biol. Rep. 37:547-551. Mitra, A., P. Schlee, C. R. Balakrishnan and F. Pirchner. 1995. Polymorphism at growth hormone and prolactin loci in Indian cattle and buffalo. J. Anim. Breed. Genet. 112: 71-74. Olivier, M. 2005. The Invader assay for SNP genotyping. Mutat. Res. 573:103-110. Oikonomou, G., K. Angelopoulou, G. Arsenos, D. Zygoyiannis and G. Banos. 2006. The effects of polymorphisms in the DGAT1, leptin and growth hormone receptor gene loci on body energy, blood metabolic and reproductive traits of Holstein cows. Anim. Genet. 40:10-17. Pastinen, T., M. Raitio, K. Lindroos, P. Tainola, L. Peltonen and A. C. Syvänen. 2000. A system for specific, high-throughput genotyping by allele specific primer extension on microarrays. Genome Res. 10:1031-1042. Reale, S., A. Campanella, A. Merigioli and F. Pilla. 2008. A novel method for species identification in milk and milk-based products. J. Dairy Res. 75:107-112. SAS Institute. 2002. The SAS system for Windows. Release 9.1. SAS Inst. Inc., Cary, NC. Schoske, R., P. M. Vallone, C. M. Ruitberg and J. M. Butler. 2003. Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal. Bioanal. Chem. 375:333-343. Soares, M. J. 2004. The prolactin and growth hormone families: Pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod. Biol. Endocrinol. 2:51. Sobrino, B., M. Brión and A. Carracedo. 2005. SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci. Int. 154:181-194. Syvänen, A. C. 2001. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2:930-942. Tait, R. C. 1999. The application of molecular biology. Curr. Issues Mol. Biol. 1(1):1-12. Turner, D., F. Choudhury, M. Reynard, D. Railton and C. Navarrete. 2002. Typing of multiple single nucleotide polymorphisms in cytokine and receptor genes using SNaPshot. Hum. Immunol. 63:508-513. Udina, I. G., S. O. Turkova, M. V. Kostuchenko, L. A. Lebedeva and G. E. Sulimova. 2001. Polymorphism of bovine prolactin gene, microsatellites, PCR-RFLP. Russian J. Genet. 4: 407-411. Vallone, P. M., R. S. Just, M D. Coble, J. M. Butler and T. J. Parsons. 2003. Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal. Bioanal. Chem. 375:333-343. Vignal, A., D. Milan, M. Sancristobal and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34:275-305. Viitala, S., J. Szyda, S. Blott, N. Schulman, M. Lidauer, A. Maki-Tanila, M. Georges and J. Vilkki. 2006. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics. 173(4): 2151-2164. Zhou, Y. and H. Jiang. 2006. Short communication: a milk trait-associated polymorphism in the bovine growth hormone receptor gene does not affect receptor signaling. J. Dairy Sci. 89:1761-1764. | 摘要: | 在乳牛基因標記輔助選拔的研究中,有些基因是被認為是與乳牛產乳性狀有關之潛在候選基因。本試驗自台南地區與嘉義大學所飼養之荷蘭種乳牛採集血樣及收集產乳紀錄,分析潛在候選基因中之生長激素受(growth hormone receptor , GHR)和泌乳素前質(prolactin precursor , PRL)基因之基因型和交替基因基因頻率,同時也探討基因型與乳中蛋白質、脂肪百分比及牛奶脂肪量、乳產量間之相關性。基因型之測定是應用 PCR–RFLP的方法為之。試驗結果顯示,在測試的荷蘭種乳牛中,GHR基因之AA基因型頻率(0.695)高於 AG基因型(0.295)和GG基因型(0.010)者。 交替基因A和G的頻率分別為0.842和0.158。PRL基因之 GG基因型頻率(0.739)高於 AG基因型(0.261)者,但在供試的荷蘭種乳牛中沒有發現AA基因型者。其交替基因G和A的頻率分別為0.870和0.130。從數值觀之,GHR基因中,基因型為AA和AG之個體,其乳量與脂肪的產量均似乎高於GG基因型者。惟就供試動物之其他性狀而言,性狀之表現並不因基因型之不同而有顯著差異(p > 0.05),兩個基因皆然。 Marker-assisted selection in dairy cattle, some genes are proposed as potential candidates associated with dairy cow performance. In the present study, the growth hormone receptor (GHR) and prolactin precursor (PRL) genes were selected to detect the genotypic and allelic frequencies. The genotypes associated with milk and milk fat yields and percentage of protein and milk fat were investigated. The blood samples and milk production records of Holstein-Friesian cows were collected from the local farms in Tainan county and National Chiayi University in Taiwan for this study. PCR-RFLP genotyping method was used for genotyping. The results showed that the AA genotype frequency (0.695) of GHR gene was higher than that of AG genotype (0.295) and GG genotype (0.010) in the tested population of Holstein cows and frequencies of allele A and G were 0.842 and 0.158, respectively. The GG genotype frequency (0.739) of PRL gene was higher than that of AG genotype (0.261), but the AA genotype was not found in the tested animals and frequencies of allele G and A were 0.870 and 0.130, respectively. The values of milk and fat yields of AA and AG types of GHR gene seems higher than GG type of tested animals, but no significant differences (p > 0.05) between other traits with the genotypes of both genes were found in this study. |
URI: | http://hdl.handle.net/11455/25359 | 其他識別: | U0005-3007201016150100 |
Appears in Collections: | 動物科學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.