Please use this identifier to cite or link to this item:
標題: 轉子引擎缸壁溫度與熱應力之數值模擬
Simulations on Wall Temperature and Thermal Stress of Wankel Engine
作者: 韓昱
Han, Yu
關鍵字: rotary engine;轉子引擎;fin;thermal stress;thermal deformation;散熱鰭片;熱應力;變形量
出版社: 機械工程學系所
引用: 1. Bartrand, T. A., and Willis, E. A. (1992). Rotary Engine Performance Limits Predicted by a Zero-Dimensional Model. NASA Contractor Report 189129. 2. Beer, F. P., and Jr, E. R. J. (2001). Mechanicsof Materials, (New York, McGraw-Hill) Chp.6. 3. Çengel, Y. A. (2006). Heat and Mass Transfer A Practical Approach, (Now York, McGraw-Hill) Chp.7-8. 4. Chen, L., Lin, J., Sun, F., and Wu, C. (1998). Efficiency of an Atkinson engine at maximum power density. Energy Conversion and Management 39, 337-341. 5. Clough, R., and Penzien, J. (1975). Dynamics of Structures, (New York, McGraw-Hill) Chp.1. 6. Emeritus, P. (2003). A Critical Review of Extended Surface Heat Transfer. Heat Transfer Engineering 24, 11-28. 7. Issa, R. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 62, 40-65. 8. Kim, H., Marie, H., and Patil, S. (2007). Two-Dimensional CFD Analysis of a Hydraulic Gear Pump. American Society of Mechanical Engineers 821-838. 9. Launder, B. E., and Spalding, D. B. (1974). The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering 3, 269-289. 10. Naphon, P., and Sookkasem, A. (2007). Investigation On Heat Transfer Characteristics of Tapered Cylinder Pin Fin Heat Sinks. Energy Conversion & Management 48, 2671-2679. 11. Lssa, R. I. (1986). Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting. Journal of Computational Physics 62, 40-65. 12. Raju, M. S., and Willis, E. A. (1990). Computational Experience With a Three-Dimensional Rotary Engine Combustion Model. NASA Technical Memorandum 103104. 13. Rehim, Z. S. A. (2009). Optimization and Thermal Performance Assessment of Pin-Fin Heat Sinks. Taylor & Francis Group 31, 51-65. 14. Shkolnik, N., and Shkolnik, A. (2008). Rotary High Efficiency Hybrid Cycle Engine. SAE Technical Paper Series 01, 13-23. 15. Shwaish, I. K., Amon, C. H., and Murth, J. Y. (2002). Thermal/Fluid Performance Evaluation of Serrated Plate Fin Heat Sinks. IEEE InterSociety Conference on Thermal Phenomena 0-7803-7152-6/02, 267-275. 16. Tzu, Y. Y., and Sen, P. H. (2009). Numerical Study of the Heat Sink with Un-uniform Fin Width Designs. International Journal of Heat and Mass Transfer 52, 3473-3480. 17. Wang, Q. W., Lin, M., Zeng, M., and Tian, L. (2008). Computational Analysis of Heat transfer and Pressure Drop Performance for Internally Finned Tubes with Three Different Longitudinal Wavy Fins Heat Mass Transfer 45, 147-156. 18. Willis, E. A., and Mcfadden, J. J. (1992). NASA''s Rotary Engine Technology Enablement Program-1983 Through 1991. NASA Technical Memorandum 105562. 19. Yang, Y. T., and Peng, H. S. (2009). Investigation of Planted Pin Fins for Heat Transfer Enhancement in Plate Fin Heat Sink. Microelectronics Reliability 49, 163-169. 20. Yoshida, M., Ishihara, S., Murakami, Y., Nakashima, K., and Yamamoso, M. (2006). Air-Cooling Effect of Fin on a Motorcycle Engine. JSME International 49, 869-875. 21. 吳宗哲 (2007). Wankel 壓縮機的性能分析. 國立中興大學機械系工程學系碩士論文. 22. 郭奇亮 (2009). UAV轉子引擎熱傳特性分析與量測. 國立中興大學機械系工程學系碩士論文. 23. 陳建章, 田紹緯, 吳宗哲, 馬淮龍, 郭正雄,盧昭暉 (2008). Wankel引擎外型與轉子設計及流場計算. 國立中興大學機械工程研究所.
rpm之轉子引擎的各腔室之流場結構、溫度分佈、缸體及散熱鰭片的溫度場和熱應力分佈等,以及缸壁變形量的週期性變化。其中,流場以預混甲烷∕純氧的燃氣進行點火;轉子每轉動120°點火一次;熱源位於-0.18m≦x≦-0.177m,-0.05m≦y≦-0.046m範圍內,強度為8.1125×1011W/m3,持續點火時間為10-5秒;通過鰭片表面的環境流體為每秒100公尺、外界溫度為300K。當流場達到穩定的週期性變化時,其重要結論如下:(1)在螺栓拘束處內的缸體係向內膨脹;而在拘束處外的散熱鰭片則是向外膨脹;向內膨脹之缸體以左側腰部的膨脹量為最大。(2) 加裝散熱外環會使內缸壁的變形量稍微增大,但是可以拘束散熱鰭片不任意膨脹變形。(3)無洩漏和絕熱的系統中,因流體溫度較高,其內缸壁的變形量比具有洩漏和熱傳的系統來得大。(4)以耦合計算具有洩漏的系統時,內缸壁產生最大變形量的位置與無洩漏及絕熱系統者相同,但時間點提前。(5)各腔室內產生燃燒過程的區域,其相對應的缸體的變形會大於其他腔室者。

This study investigates the flow structures and the temperature distributions in each chamber of the rotary engine by way of Fluent/Ansys (CFD software). Besides, the temperature and thermal stress distributions of the housing, the fins, and the periodic changes in thermal stress and strain or deformations are outlined. In this study, the rotating angular velocity is kept at 6000 rpm; the working fluid is premixed by the methane and the oxygen. A heat sources is located within the region -0.18m≦x≦-0.177m,-0.05m≦y≦-0.046m, the heat intensity is 8.1125×1011W/m3 ; and the duration of combustion lasts for 10-5 sec. The wind speed of the surrounding air is about 100 m/s and the ambient temperature is 300 K. While the flow structures within each chamber rearch the steady state, some important results are concluded as follows: (1) for the region inward of the constraint (the bolts), the housing expands in the negative radial direction; however, for those outward of the constraint, it expands in the positive radial direction. (2) The constraint of the outer ring of the fin not only increases the amount of deformation of the housing; it also reduces the amount of free expansion of the fin. The maximum housing deformation is located near the waist of the combustion chamber. (3) For the case of adiabatic combustion process, the temperatures within each chamber are much higher than those with heat conduction across the housing wall. (4) For the case with heat conduction through the housing wall, the point of maximum deformation is about the same; but occurs at early angular position along the housing wall. (5) The deformation along the housing wall is much larger for the combustion chamber than those for compression and exhaust chambers.
其他識別: U0005-2508201015112100
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.