Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25404
標題: 多能性相關基因Oct4與Nanog於3T3纖維母細胞與小鼠胚幹細胞中再表現之探討
Reactivation of pluripotency-related genes, Oct4 and Nanog, in 3T3 fibroblasts and mouse embryonic stem cells
作者: 張為芳
Chang, Wei-Fang
關鍵字: Oct4;Oct4;Nanog;Embryonic stem cells;Nanog;胚幹細胞
出版社: 畜產學系所
引用: Adams, I. R., and A. McLaren. 2004. Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. Dev. Dyn. 229:733-744. Ambrosetti, D.C., H. R. Scholer, L. Dailey, and C. Basilico. 2000. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J. Biol. Chem. 275: 23387-23397. Avilion, A. A., S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian, and R. L. Badge. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17: 126-140. Bagis, H., H. O. Mercan, H. Sagirkaya, and G. Turgut. 2003. The effect of genetic background on the in vitro development of mouse embryo in potassium simplex optimized medium supplemented with amino acids (KSOMAA).Turk. J. Vet. Anim. Sci. 27: 409-415. Ballas, N., and G. Mandel. 2005. The many faces of REST oversee epigenetic programming of neuronal genes. Curr. Opin. Neurobiol. 15: 500-506. Barnea, E., and Y. Bergman. 2000. Synergy of SF1 and RAR in activation of Oct-3/4 promoter. J. Bio. Chem. 275: 6608-6619. Beisel, C., A. Imhof, J. Greene, E. Kremmer, and F. Sauer. 2002. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419: 857-862. Biggers, J. D., L. K. McGinnis, and M. Raffin. 2000. Amino acid and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63: 281-293. Boer, B., T. A. Luster, C. Bernadt, and A. Rizzino. 2005. Distal enhancer of the mouse FGF4 gene and its human counterpart exhibit differential activity: critical role of a GT box. Mol. Reprod. Dev. 71: 263-274. Boiani, M. S. Eckardt, H. R. Scholer, and K. J. McLaughlin. 2002. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes. Dev. 16: 1209-1219. Bortvin, A., K. Eggan, H. Skaletsky, H. Akutsu, D. L. Berry, R. Yanagimachi, D. C. Page, and R. Jaenisch. 2003. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130: 1673-1680. Boyer, L. A., K. Plath, J. Zeitlinger, T. Brambrink, L. A. Medeiros, T. I. Lee, S. S. Levine, M. Wernig, A. Tajonar, M. K. Ray, G. W. Bell, A. P. Otte, M. Vidal, D. K. Gifford, R. A. Young, and R. Jaenisch. 2006. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349-353. Boyes J., and A. Bird. 1992. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11: 327-333. Brinster, R. L., H. Y. Chen, M. E.Trumbauer, M. K. Yagle, and R. D. Palmiter. 1985. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl. Acad. Sci. U.S.A. 82: 4438-4442. Burdon, T., A. Smith, and P. Savatier. 2002. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends. Cell. Biol. 12: 432-438. Bylund, M., E. Andersson, B. G. Novitch, and J. Muhr. 2003. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6: 1162-1168. Byrne, J. A., S. Simonsson, P. S. Western, and J. B. Gurdon. 2003. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13: 1206-1213. Cao, R., and Y. Zhang. 2004. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell. 15: 57-67. Carlson, L. L., A. W. Page, and T. H. Bestor. 1992. Localization and properties of DNA methyltransferase in pre-implantation mouse embryos: implications for genomic imprinting. Genes. Dev. 6: 2536-2541. Chai, N., Y. Patel, K. Jacobson, J. McMahon, A. M. Mahon, and D. A. Rappolee. 1998. FGF is an essential regulator of the fifth cell division in preimplantation mouse embryos. Dev. Biol. 198: 105-115. Chambers, I., C. Douglas, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643-655. Clark, S. J., J. Harrison, C. L. Paul, and M. Frommer. 1994. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22: 2990-2997. Cooney, A. J., G. C. Hummelke, T. Herman, F. Chen, and K. J. Jackson. 1998. Germ cell nuclear factor is a response element-specific repressor of transcription. Biochem. Biophys. Res. Commun. 245: 94-100. Czermin, B., R. Melfi, D. McCabe, V. Seitz, A. Imhof, and V. Pirrotta. 2002. Drosophila enhancer of Zeste/ES cells complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185-196. Dean, W., F. Santos, M. Stojkovic, V. Zakhartchenko, J. Walter, E. Wolf, and W. Reik. 2001. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. U.S.A. 98: 13734-13738. Deb-Rinker, P., D. Ly, A. Jezierski, M. Sikorska, and P. R. Walker. 2005. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J. Biol. Chem. 280: 6257-6260. Do, T. J., and H. R. Scholer. 2005. Comparison of neurosphere cells with cumulus cells after fusion with embryonic stem cells: reprogramming potential. Anim. Reprod. Sci. 17: 143-149. Dottori, M., M. K. Gross, P. Labosky, and M. Goulding. 2001. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128: 4127-4138. Du, Z. W., H. C. Cong, and Z. Yao. 2001. Identification of putative downstream genes of Oct-4 by suppression-subtractive hybridization. Biochem. Biophys. Res. Commun: 282: 701-706. Deuring, R., L. Fanti, J. A. Armstrong, M. Sarte, O. Papoulas, M. Prestel, G. Daubresse, M. Verardo, S. L. Moseley, M. Berloco, T. Tsukiyama, C. Wu, S. Pimpinelli, and J. W. Tamkun. 2000. The ISWI chromatin remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5: 355-365. Evans, M. J., and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156. Feldman, B., W. Poueymirou, V. E. Papaioannou, T. M. DeChiara, and M. Goldfarb. 1995. Requirement of FGF4 for postimplantation mouse development. Science 267: 246-249. Fry, C. J., and C. L. Peterson.2001. Chromatin remodeling enzymes: who's on first? Curr. Biol. 11:185-197. Fuhrmann, G., A. C. Chung, K. J. Jackson, G. Hummelke, A. Baniahmad, J. Sutter, I. Sylvester, H. R. Scholer, A. J. Cooney. 2001. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell 1: 377-387. Fukushima, A., A. Okuda, M. Nishimoto, N. Seki, T. Hori, and M. Muramatsu. 1998. Characterization of functional domains of an embryonic stem cell coactivator UTF1 which are conserved and essential for potentiation of ATF-2 Activity. J. Bio. Chem. 273: 25840-25849. Gardner, R. L., and F. A. Brook. 1997. Reflections on the biology of embryonic stem (ES) cells. Int. J. Dev. Biol. 41: 235-243. Gidekel, S., and Y. Bergman. 2002. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J. Bio. Chem. 277: 34521-34530. Glaser, T., and O. Brustle. 2005. Retinoic acid induction of ES-cell-derived neurons: the radial glia connection. Trends Neurosci. 8: 397-400. Goldin, S. N., and V. E. Papaioannou. 2003. Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis 36: 40-47. Gorman, C.M., P. W. Rigby, and D. P. Lane. 1985. Negative regulation of viral enhancers in undifferentiated embryonic stem cells. Cell 42: 519-526. Graham, V., J. Khudyakov, P. Ellis, and L. Pevny. 2003. SOX2 functions to maintain neural progenitor identity. Neuron 39: 749-765. Gu, P., D. L. Menuet, A. C. K. Chung, M. Mancini, D. A. Wheeler, and A. J. Cooney. 2005. Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation. Mol. Cell. Biol. 25: 8507-8519. Guo Y., R. Costa, H. Ramsey, T. Starnes, G. Vance, K. Robertson, M. Kelley, R. Reinbold, H. Scholer, and R. Hromas. 2002. The embryonic stem cell trans-cription factors Oct-4 and FoxD3 interact to regulate endodermal specific promoter expression. Proc. Natl. Acad. Sci. U.S.A. 99: 3663-3667. Hansis, C., J. A. Grifo, and L. C. Krey. 2000. Oct-4 expression in inner cell mass and trophectoderm of human blastocysts. Mol. Hum. Reprod. 6: 999-1004. Hansis, C., Y. X. Tang, J. A. Grifo, and L. C. Krey. 2001. Analysis of Oct-4 expression and ploidy in individual human blastomeres. Mol. Hum. Reprod. 7: 155-161. Hansis, C., G. Barreto, N. Maltry, and C. Niehrs. 2004. Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr. Biol. 14: 1475-1480. Hart, A. H., H. Lynne, I. Marilyn, and R. Lorraine. 2004. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev. Dyn. 230: 187-198. Hatano, S., M. Tada, H. Kimura, S. Yamaguchi, T. Kono, T. Nakano, H. Suemori, N. Nakatsuji, and T. Tada. 2005. Pluripotential competence of cells associated with Nanog activity. Mech. Dev. 122: 12267-12279. Hattori, N., K. Nishino, Y. G. Ko, N. Hattori, J. Ohgane, S. Tanaka, and K. Shiota. 2004. Epigenetic control of mouse Oct4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 279: 17063-17069. Herr, W., and M. A. Cleary. 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes. Dev. 9: 1679-1693. Kamachi, Y., S. Sockanathan, Q. Liu, M. Breitman, R. Lovellreins, and H. Kondoh. 1995. Involvement of SOX proteins in lens-specific activation of crystalline genes. EMBO J. 14: 3510-3419. Kang, Y. K., D. B. Koo, J. S. Park, Y. H. Choi, A. S. Chung, K. K. Lee and Y. M. Han. 2001. Aberrant methylation of donor genome in cloned bovine embryos. Nat. Genet. 28: 173-177. Kato, Y., III W. M. Rideout, K. Hilton, S. C. Barton, Y. Tsunoda, and M. A. Surani. 1999. Developmental potential of mouse primordial germ cells. Devlopment 126: 1823-1832. Kennison, J. A. 2004. Introduction of Trx-G and Pc-G genes. Methods. Enzymol. 377: 61-70. Kiger, A. A., D. L. Jones, C. Schulz, M. B. Rogers, and M. T. Fuller. 2001. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294: 2542-2545. Kimura, C., M. M. Shen, N. Takeda, S. Aizawa, and I.Matsuo. 2001. Complementary functions of Otx2 and Cripto in initial patterning of mouse epiblast. Dev. Biol. 235: 12-32. Kimura, H., M. Tada, N. Nakatsuji, and T. Tada1. 2004. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol. Cell. Biol. 24: 5710-5720. La Thangue, N. B., and P. W. Rigby. 1987. An adenovirus E1A-like transcription factor is regulated during the differentiation of murine embryonic carcinoma stem cells. Cell 49: 507-513. Lawitts, J. A., and J. D. Biggers. 1993. Culture of preimplantation embryos. Meth. Enzymol. 225: 153-164. Lee, T. I., R.G. Jenner, L. A. Boyer, M. G. Guenther, S. S. Levine, R. M. Kumar, B. Chevalier, S. E. Johnstone, M. F. Cole, K. Isono, H. Koseki, T. Fuchikami, K. Abe, H. L. Murray, J. P. Zucker, B. Yuan, G.. W. Bell, E. Herbolsheimer, N. M. Hannett, K. Sun, D. T. Odom, A. P. Otte, T. L. Volkert, D. P. Bartel, D. A. Melton, D. K. Gifford, R. Jaenisch, and R. A. Young. 2006. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301-313. Leger, H., E. Sock, K. Renner, F. Grummt, and M. Wegner. 1995. Functional interaction between the POU domain protein Tst-1/Oct-6 and high-mobility-group protein HMG-I/Y. Mol. Cell. Biol. 15: 3738-3747. Liu, L., E. Czerwiec, and D. L. Keefe. 2004. Effect of ploidy and parental genome composition on expression of Oct-4 protein in mouse embryos. Gene. Expr. Patterns. 4: 433-441. Loh, Y. H., Q. Wu, J. L. Chew, V. B. Vega, W. Zhang, X. Chen, G. Bourque, J. George, B. Leong, J. Liu, K. Y. Wong, K. W. Sung, C. W. H. Lee, X. D. Zhao, K. P. Chiu, L. Lipovich, V. A. Kuznetsov, P. Robson, L. W. Stanton, C. L. Wei, Y. Ruan, B. Lim, and H. H. Ng. 2006. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38: 431-440. Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389: 251-260. Luo, J., R. Sladek, J. A. Bader, A. Matthyssen, J. Rossant, and V. Giguere. 1997. Placental abnormalities in mouse embryos lacking the orphannuclear receptor ERR-b. Nature 388: 778-782. Marikawa, Y., T. C. Fujita, and V. B. Alarcon. 2005. Heterogeneous DNA methylation status of the regulatory element of the mouse Oct4 gene in adult somatic cell population. Cloning Stem Cells 7: 8-16. Marin, M., A. Karis, and P. Visser. 1997. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 89: 619-628. McBurney, M. W. 1993. P19 embryonal carcinoma cells. Int. J. Dev. Biol. 37: 135-140. Minucci, S., V. Botquin, Y. I. Yeom, A. Dey, I. Sylvester, D. J. Zand, K. Ohbo, K. Ozato, and H. R. Scholer .1996. Retinoic acid-mediated down-regulation of Oct3/4 coincides with the loss of promoter occupancy in vivo. EMBO J. 15:888-899. Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda, and S. Yamanaka. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES Cells. Cell 113: 631-642. Monti, M., S. Garagna, C. Redi, and M. Zuccotti. 2006. Gonadotropins affect Oct-4 gene expression during mouse oocyte growth. Mol. Reprod. Dev. 73: 685-691. Nishimoto, M., A. Fukushima, A. Okuda, and M. Muramatsu. 1999. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol. 19: 5453-5465. Nishimoto, M., A. Fukushima, S. Miyagi, Y. Suzuki, S. Sugano, Y. Matsuda, T. Hori , M. Muramatsu, and A. Okuda. 2001. Structural analyses of the UTF1 gene encoding a transcriptional coactivator expressed in pluripotent embryonic stem cells. Biochem. Biophys. Res. Commun. 285: 945-953. Nishimoto, M., S. Miyagi, T. Katayanagi, M. Tomioka, M. Muramatsu, and A. Okuda. 2003. The embryonic Octamer factor 3/4 displays distinct DNA binding specificity from those of other Octamer factors. Biochem. Biophys. Res. Commun. 302: 581-586. Nishimoto, M., S. Miyagi, T. Yamagishi, T. Sakaguchi, H. Niwa, M. Muramatsu, and A. Okuda. 2005. Oct-3/4 maintains the proliferative embryonic stem cell state via specific binding to a variant octamer sequence in the regulatory region of the UTF1 locus. Mol. Cell. Biol. 25: 5084-5894. Niswander, L., and G. R. Martin. 1992. FGF4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114: 755-768. Niwa, H., J. Miyazaki, and A. G. Smith. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24: 372-376. Nowling, T., C. Bernadt, L. Johnson, M. Desler, and A. Rizzino. 2003. The co-activator p300 associates physically with and can mediate the action of the distal enhancer of the FGF4 gene. J. Biol. Chem. 278: 13696-13705. Okamoto, K., H. Okazawa, A. Okuda, M. Sakai, M. Muramatsu, and H. Hamada. 1990. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60: 461-472. Okano, M., D. W. Bell, D. A. Haber, and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257. Okuda, A., A. Fukushima, M. Nishimoto, A. Orimo, T. Yamagishi, Y. Nabeshima, M. Kuro-o, Y. Nabeshima, K. Boon, M. Keaveney, H. G. Stunnenberg, and M. Muramatsu. 1998. UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J. 17: 2019-2032. Ornitz, D. M., and N. Itoh. 2001. Fibroblast growth factors. Genome. Biol. 2: 3005.1-3005.12. Ovitt, C. E., and H.R. Scholer. 1998. The molecular biology of Oct-4 in the early mouse embryo. Mol. Hum. Reprod. 4: 1021-1031. Paynton, B. V., R. Rempel, and R. Bachvarova. 1988. Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev. Biol. 129: 304-314. Pesce, M., and H. R. Scholer. 2000. Oct-4: control of totipotency and germline determination. Mol. Reprod. Dev. 55:452-457. Pesce, M., X. Wang, D. J. Wolgemuth, and H. Scholer. 1998. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech. Dev. 71: 89-98. Peura, T. T., J-M. Hyttinen, M. Tolvanen, and J. Janne. 1994. Effects of microinjection-related treatments on the subsequent development of in vitro-produced bovine oocytes. Theriogenology 42: 433-443. Piestun, D., B. S. Kochupurakkal, J. J. Hirsch, S. Zeligson, M. Koudritsky, E. Domany, N. Amariglio, G. Rechavi, and D. Givol. 2006. Nanog transforms NIH3T3 cells and targets cell-type restricted genes. Biochem. Biophys. Res. Commun. 343: 279-285. Pugh, B. F., and R. Tjian. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5: 1935-1945. Reik, W., W. Dean, and J. Walter. 2001. Epigenetic reprogramming in mammalian development. Science 293: 1089-1093. Rodda, D. J., J. L. Chew, L. H. Lim, Y. H. Loh, B. Wang, H. H. Ng, and P. Robson. 2005. Transcription of Nanog by Oct4 and Sox2. J. Biol. Chem. 280: 24731-24737. Sandberg, M., M. Kallstrom, and J. Muhr. 2005. Sox21 promotes the progression of vertebrate neurogenesis. Nat. Neurosci. 8: 995-1001. Santos, F., V. Zakhartchenko, M. Stojkovic, A. Peters, T. Jenuwein, E. Wolf, W. Reik, and W. Dean. 2003. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13: 1116-1121. Santos, F., and W. Dean. 2004. Epigenetic reprogramming during early development in mammals. Reproduction 127: 673-651. Sato, N., L. Meijer, L. Skaltsounis, P. Greengard, and A. H. Brivanlou. 2004. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3- specific inhibitor. Nat. Med. 10: 55-63. Scholer, H. R., S. Ruppert, N. Suzuki, K. Chowdhiry, and P.Gruss. 1990. New type of POU domain in germ line-specific protein Oct4. Nature 344:435-439. Schoorlemmer, J., A. van Puijenbroek, M. van Den Eijnden, L. Jonk, C. Pals, and W. Kruijer. 1994. Characterization of negative retinoic acid response elements in the murine Oct4 promoter. Mol. Cell. Biol. 14:1122-1136. Shoukhrat, M. M., C. K. Hung, J. D. Hennebold, and D. P. Wolf. 2003. Oct4 expression in pluripotent cells of the Rhesus Monkey. Biol. Reprod. 69: 1785-1792. Stewart, C. L., G. Inder, and B. Harshida. 1994. Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161: 626-628. Sun, X., E. N. Meyers, M. Lewandoski, and G. R. Martin. 2006. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes. Dev. 13: 1834-1846. Tai, M. H., C. C. Chang, L. K. Olson, and J. E. Trosko. 2005. Oct4 expression in adult human stem cells: evidence in support of stem cell theory of carcinogenesis. Carcinogenesis 26: 495-502. Tanaka, S., T. Kunath, A. K. Hadjantonakis, A. Nagy, and J. Rossant. 1998. Promotion of trophoblast stem cell proliferation by FGF4. Science 282: 2072-2075. Tompers, D. M., R. K. Foreman, Q. Wang, M. Kumanova, and P. A. Labosky. 2005. Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo. Dev. Biol. 285: 126-137. van Eijk, M. J., M. A. van Rooijen, S. Modina, L. Scesi, G. Folkers, H. T. van Tol, M. M. Bevers, S. R. Fisher, H. A. Lewin, D. Rakacolli, C. Galli, C. de Vaureix, A. O. Trounson, C. L. Mummery, and F. Gandolfi. 1999. Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biol. Reprod. 60: 1093-1103. Wall, R. J., R. K. Paleyanda, J. A. Foster, A. Powell, C. Rexroad, and H. Lubon. 2000. DNA preparation method can influence outcome of transgenic animal experiments. Anim. Biotechnol. 11:19-32. Wang, S. H., M. S. Tsai, M. F. Chiang, and H. Li. 2003. A novel NK-type homeobox gene, ENK (early embryo specific NK), preferentially expressed in embryonic stem cells. Gene Expr. Patterns 3: 99-103. Wegner, M., and C. C. Stolt. 2005. From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci. 28: 583-588. Wilder, P. J., C. Mountjoy, M. C. Macleod, and A. Rizzino. 1997. DNA sequence and nucleosome placement on the murine fibroblast growth factor-4 gene. DNA Seq. 7: 117-121. Williams, B. L., A. E. T. Sparks, R. S. Canseco, J. W. Knight, J. L. Johnson, W. H. Celander, R. L. Page, W. N. Drohan, J. M. Young, R. E. Pearson, T. D. Wilkins, and F. C. Gwazduaskas. 1992. In vitro development of zygotes from prepubertal gilts after microinjection of DNA. J. Anim. Sci. 70: 2207-2211. Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, and K. H. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810-813. Wu, D., and Z. Yao. 2005. Isolation and characterization of the murine Nanog gene promoter. Cell Res. 15: 317-324. Yamazaki, Y., T. C. Fujita, E. W. Low, V. B. Alarcon, R. Yanagimachi, and Y. Marikawa. 2006. Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos. Mol. Reprod. Dev. 73: 180-188. Yeom, Y. I., G. Fuhrmann, C. E. Ovitt, A. Brehm, K. Ohbo, M. Gross, K. Hubner, and H. R. Scholer. 1996. Germline regulatory element of Oct4 specific for the totipotent cycle of embryonal cells. Development 122: 881-894. Zhang, J., X. Wang, B. Chen, G. Suo, Y. Zhao, Z. Duan, and J. Dai. 2005. Expression of Nanog gene promotes NIH3T3 cell proliferation. Biochem. Biophy.s Res. Commun. 338: 1098-1102. Zhong, W., Q.T. Wang, T. Sun, F. Wang, J. Liu, R. Leach, A. Johnson, E.E. Puscheck, and D. A. Rappolee. 2006. FGF ligand family mRNA dxpression profile for mouse preimplantation embryos, early gestation human placenta, and mouse trophoblast stem cells. Mol. Reprod. Dev. 73: 540-550.
摘要: 
特異表現於早期胚、胚幹細胞(embryonic stem cells, ES cells)與其他具分化多能性細胞之Oct4與Nanog,已被證實為維持細胞多能性之重要轉錄因子。Oct4上游調控區域序列會因胚發育階段與細胞分化狀態,而有不同之轉錄活性。研究報告指出,分化細胞中並無Oct4與Nanog之表現,但於ES cells中過量表現Oct4與Nanog,亦會促成ES cells之分化。因此,本研究之目的為選殖小鼠Oct4上游調控區,以期為未來基因轉殖胚早期報導基因(reporter gene)之調控序列,並希望藉由Oct4與Nanog表現載體(pCMV-Oct4與pCMV-Nanog),使ES cells過度表現此兩種轉錄因子,以探討它們對胚層分化之調控。試驗一,自小鼠基因組DNA選殖小鼠Oct4啟動子以及Oct4增強子,構築於pCX-EGFP中,藉由綠螢光蛋白(enhanced green fluorescent protein, EGFP)表現分析Oct4上游調控區於不同細胞與早期鼠胚中之轉錄活性。結果顯示,轉染Oct4上游調控區域至ES cells中,其轉錄活性大於轉染至胚胎成纖維母細胞(mouse embryonic fibroblast, MEF)與結腸癌細胞(CT-26)者,且增強子序列能於ES cells中增強Oct4啟動子之轉錄活性。將含Oct4增強子之調控區基因片段,以顯微注射方式注射入至原核期鼠胚,培養至囊胚後觀察到EGFP集中表現於內細胞群,證實此調控區能專一表現於多能性細胞。試驗二,將pCMV-Oct4轉染至小鼠ES cells與3T3胎源性纖維母細胞後,以RT-PCR、西方吸漬法與免疫螢光染色法分析Oct4之表現。結果顯示,轉染pCMV-Oct4之3T3胎源性纖維母細胞可偵測到Oct4之表現,而轉染之ES cells,Oct4之下游基因,如Esrrb, Rif1 與REST 之表現量,亦隨著Oct4表現上升亦有增加之趨勢,但並未發現各胚層特異性基因於轉染之ES cells中表現。試驗三,以與試驗二相同構築之載體表現Nanog,經轉染後發現Nanog能再表現於3T3 cells,且於ES cells中,其下游基因表現亦類似於試驗二。因此,本試驗所選殖之具胚發育階段與細胞分化特異性之基因調控區,以及所構築之表現載體均具有功能性,可於未來作為基因轉殖,以及研究Oct4與Nanog調控細胞多能性試驗之工具。

Transcription factors, Oct4 and Nanog, are believed to play a major role in the maintenance of cell pluripotency. They exclusively express in the early stage embryos, embryonic stem (ES) cells and pluripotent cells. It has been shown that the regulatory regions of Oct4 possess different transcriptional activity in a developmental pluripotency-dependent manner. No expression of Oct4 and Nanog is found in the differentiated cells, but over expression induces differentiation in ES cells. Hence, the aims of this study were to clone the regulatory regions of Oct4 for the reporter system in the production of transgenic animals, and to construct Oct4 and Nanog expression vectors (pCMV-Oct4 and pCMV-Nanog) to investigate the functions of Oct4 and Nanog in the regulation of germ layer differentiation. In Experiment 1, the promoter and enhancer regions were cloned from mouse genomic DNA and constructed into pCX-EGFP, the transcriptional activity of regulatory regions was analyzed by the expression of EGFP. The results showed that the constructed Oct4 regulatory regions could transcribe more efficiently in ES cells than in the differentiated cells, such as embryonic fibroblast cells and colon carcinoma cells. Additionally, the enhancer region increased transcription activity of Oct4 promoter in ES cells. After injection of EGFP gene driven by Oct4 enhancer and promoter into the pronuclei of mouse zygotes, the expression of EGFP was restricted to the inner cell mass of the blastocysts. It suggested that the cloned Oct4 regulatory regions possess a cell type-specific activity. In Experiment 2, mouse ES and 3T3 cells were transfected with pCMV-Oct4. The expression of Oct4 was analyzed by RT-PCR, Western blotting and immunofluorescent staining. Results showed that Oct4 was re-expressed in 3T3, and the expressions of Oct4 downstream genes, Esrrb, Rif1 and REST, were also increased. However, no expression of germ layer-specific genes was detected in transfected ES cells. In Experiment 3, the expression profiles of Nanog and Nanog downstream genes in 3T3 and mouse ES cells after transfected with pCMV-Nanog were similar to the results shown in Experiment 2. In conclusion, the gene constructs produced in this study are functional and could be applied to study Oct4- and Nanog-regulated cell pluripotency.
URI: http://hdl.handle.net/11455/25404
其他識別: U0005-2208200600054600
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.