Please use this identifier to cite or link to this item:
標題: 小鼠胰臟核糖核酸水解酵素之表現以及應用核糖核酸干擾作用探討其對小鼠胚發育之影響
The expression of RNase 1 in mice and study of its effect on the development of mouse embryos by RNA interference
作者: 方榮達
Fang, Jung-Da
關鍵字: mouse embryo;鼠胚;ribonuclease;RNA interference;核糖核酸水解酵素;核糖核酸干擾作用
出版社: 畜產學系所
引用: Bagis, H., H. O. Mercan, H. Sagirkaya and G. Turgut. 2003. The effect of genetic background on the in vitro development of mouse embryo in potassium simplex optimized mudium supplemented with amino acds(KSOMAA)。Turk. J. Vet. Anim. Sci. 27: 409-415. Beintema, J. J. 1998. Introduction: the ribonuclease A superfamily. CMLS, Cell. Mol. Life Sci. 54:763-765. Biggers, J. D., L. K. McGinnis and M. Raffin. 2000. Amino acid and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63: 281-293. Blackburn, P. and S. Moore. 1982. Pancreatic ribonmuclease. In: Boyer P. D. (ed), The enzymes, vol.15. Academic Press, New York, pp. 317-433. Bond, M. D. and D. J. Strydom. 1989. Amino acid sequence of bovine angiogenin. Biochemistry 28: 6110-6113. Bond, M. D., D. J. Strydom and B. L. Vallee. 1993. Characterization and sequencing of rabbit , pig and mouse angiogenins: Discerment of function important residues and regions. Biochim. Biophys. Acta. 1162: 177-186. Boden, D., O. Pusch, F. Lee, L. Tucker, P. R. Shank and B. Ramratnam. 2003. Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res. 31: 5033-5038. Brennecke, J., D. R. Hipfner, A. Stark, R. B. Russell and S. M. Cohen. 2003. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25-56. Brinster, R. L., H. Y. Chen, M. E. Trumbauer, M. K. Yagle and R. D. Palmiter. 1985. Factors affecting the efficiency of inteoducing foreign DNA into mice by microinjection eggs. Proc. Natl. Acad Sci. 82: 4438-4442. Brummelkamp, T. R., R. Bernard and R. Agami. 2002. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2: 243-247. Buchon, N. and C. Vaury. RNAi: a defensive RNA-silencing against viruses and transposable elements. Nature 96:195-202. Calin, G. A., C. D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich and C. M. Croce. 2002. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U.S.A. 99: 15524-15529. Calin, G. A., C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini and C. M. Croce. 2004. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. U.S.A. 101: 2999-3004. Cho, S., J. J. Beintema and J. Zhang. 2005. The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomic 85: 208-220. Cimmino, A, G. A. Calin, M. Fabbri, M. V. Iorio, M. Ferracin, M. Shimizu, S. E. Wojcik, R. I. Aqeilan, S. Zupo, M. Dono, L. Rassenti, H. Alder, S. Volinia, C.-G. Liu, T. J. Kipps, M. Negrini and C. M. Croce. 2005. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. U.S.A. 102: 13944-13949. Cormier, S. A., K. A. Larson, S. Yuan, T. L. Mitchell, K. Lindenberger, P. Carrigan, N. A. Lee and J. J. Lee. 2001. Mouse eosinophil-associated ribonucleases: a unique subfamily expressed during hematopoiesis. Mamm. Genome 12: 352-361. Covarrubias, L., Y. Nishida and B. Mintz. 1986. Early postimplantation embryo lethality due to DNA rearrangements in a transgenic mouse strain. Proc. Natl. Acad. Sci. U.S.A. 83: 6020-6024. Covarrudias, L. Y. Nishida, M. Terao, P. D’Eustachio and B. Mintz. 1987. Cellular DNA rearrangements and early developmental arrest caused by DNA insertion in transgenic mouse embryos. Mol. Cell. Biol. 7: 2243-2247. Cuchillo, C. M., M. Vilanova and M. V. Nogues. 1997. Pancreatic ribonucleases. In: D’ Alessio G. and Riordan J. F. (eds), Ribonuclease, structures and functions. Academic Press, San Diego, CA, pp. 271-304. Denli, A. M., B. B. J. Tops, R. A. Plasterk, R. F. Ketting and G. J. Hannon. 2004. Processing of primary microRNAs by microprocessor complex. Nature 432:231-235. Domachowske, J. B., C. A. Bonville, K. D. Dyer and H. F. Rosenberg. 1998a. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res. 26: 5327-5332. Domachowske, J. B., K. D. Dyer, A. G. Adams, T. L. Leto and H. F. Rosenberg. 1998b. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucl. Acids Res. 26: 3358-3363. Donato, A. D., V. Cafaro, I. Romeo and G. D''alessio. 1995. Hints on the evolutionary design of a dimeric RNase with special. Protein sci. 4: 1470-1477. Dyer, K. D. and H. F. Rosenberg. 2005. The mouse RNase 4 and RNase 5/ ang 1 locus utilizes dual promoter for tissue-specific expression. Nucleic Acids Res. 33: 1077-1086. Elbashir, S. M., J. Harborth, K. Weber and Thomas Tuschla. 2002. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26: 199-213. Elbashir, S. M., W. Lendeckel and T. Tuschl. 2001a. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15: 188-200. Elbashir, S. M., J. Martinez, A. Patkaniowska, W. Lendeckel and T. Tuschl. 2001b. Functional anatomy of siRNAs for mediating efficient RNAi in in Drosophila melanogaster embryo lysate. EMBO J. 20: 6877-6888. Fett, J. W., D. J. Strydom, R. R. Lobb, E. M. Alderman, J. L. Bethune, J. F. Riordan and B. L. Vallee. 1985. Isolation and characterization of Angiogenin, an angiogenin protein from human carcinoma cells. Biochemistry 24: 5480-5486. Filipowicz, W., L. Jaskiewicz, F. A. Kolb and R. S. Pillia. 2005. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15: 331-341. Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Drever and C. C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. Flavell, R. B. 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. U.S.A. 91: 3490-3496. Fredens, K., R. Dahl and P. Venge. 1982. The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein-X. J. Allergy Clin. Immunol. 70: 361-366. Freimann, S., I. Ben-Ami, L. Hirsh, A. Dantes, R. Halperin and A. Amsterdam. 2004. Drug development for ovarian hyper-stimulation and anti-cancer treatment: blocking of gonadotropin signaling for epiregulin and amphiregulin biosynthesis. Biochem. Pharmacol. 68: 989-996. Fu, X., W. G. Roberts, V. Nobile, R. Shapiro and M. P. Kamps. 1999. mAngiogenin-3, a target gene of oncoprotein E2a-Pbx1, encodes a new angiogenic member of the angiogenin family. Growth Factor. 17: 125-137. Gleich, G. J., D. A. Loegering, M. P. Bell, J. L. Checkel, S. J. Ackerman and D. J. McKean. 1986. Biochemical and function similarities between human esoinophil-derived neurotoxin a nd eosinophil cationic protein: Homology with ribonuclease. Proc. Natl. Acad. Sci. U.S.A. 83: 3146-3150. Grimm, D., K. L.Streetz, C. L. Jopling, T. A. Storm, K. Pandey, C. R. Davis, P. Marion, F. Salazar and M. A. Kay. 2006. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441: 537-541. Hasuwa, H., K. Kaseda, T. Einarsdottir and M. Okabe. 2002. Small interfering RNA and gene silencing in the transgenic mice and rats. FEBS Lett. 532: 227-230. Harboth, J., S. M. Elbashir, K. Bechert, T. Hannon and K. Weber. 2001. Identification of essential genes in cultures mammalian cells using small interfering RNAs. J. Cell Sci. 114: 4557-4565. Harder, J. and J.-M. Schroder. 2002. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J. Biol. Chem. 277: 46779-46784. He, L., J. M. Thomson, M. T. Hemann, E. Hernando-Monge, D. Mu, S. Goodson, S. Powers, C. Cordon-Cardo, S. W. Lowe, G. J. Hannon and S. M. Hammond. 2005. A microRNA polycistron as a potential human oncogene. Nature 435: 828-833. Hipfner, D. R., K. Weigmann and S. M. Cohen. 2002. The bantam gene regulates Drosophila growth. Genetics 161: 1527-1537. Hammond, S. M., E. Bernstein, D. Beach and G. J. Hannon. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293-296. Hogan, B. L. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10: 1580-1594. Hooper, L. V., T. S. Stappenbenk, C. V. Hong and J. I. Gordon. 2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunolo. 4: 269-273. Hofsteenge, J., A. Vicentini and O. Zelenjo. 1998. Ribonuclease 4, an evolutionarily conserved member of the superfamily. Cell. Mol. Life Sci. 54: 804-810. Huang, H. C., S. C. Wang, Y. J. Leu, S. C. Lu and Y. D. Liao. 1998. The Rana catesbeiana rcr gene encoding a cytotoxic ribonuclease. Tissue distribution, cloning, purification, cytotoxicity, and active residues for RNase activity. J. Biol. Chem. 273: 6395-6401. Hutvagner, G.. 2005. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett. 579: 5850-5857. Kim, D.-H., M. A. Behlke, S. D. Rose, M.-S. Chang, S. Choi and J. J. Rossi. 2005. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23: 222-226. Koga, K. Y. Osuga, O. Tsutsumi, M. Momoeda, A. Suenaga, K. Kugu, T. Fujiwara, Y. Takai, T. Yano and Y. Taketani. 2000. Evidence for the presence of angiofenin in human follicular fluid and the up-regulation of its production by human chorionic gonadotropin and hypoxia. J. Clin. Endocrinol. Metab. 85: 3352-3355 Jagla, B., N. Aulner, P. D. Kelly, D. Song, A. Volchuk, A. Zatorski, D. Shum, T. Mayer, D. A. De Angelis, O. Ouerfelli, U. Rutishauser and J. E. Rothman. Sequence characteristics of functional siRNAs. 2005. RNA 11: 864-872 Landthaler, M., A. Yalcin and T. Tuschl. 2004. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are require for miRNA biogenesis. Curr. Biol. 14: 2162-2167. Lapteva, N., A. G. Yang, D. E. Sanders, R. W. Strube and S. Y. Chen. 2004. CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther. 12: 84-89. Larson, K. A., E. V. Olson, B. J. Madden, G. J. Gleich, N. A. Lee and J. J. Lee. 1996. Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily. Proc. Natl. Acad. Sci. U.S.A. 93: 12370-12375. Lee, H. S., I. S. Lee, T. C. Kang, G. B. Jeong. and S. I. Cha. 1999. Angiogenin is involved in morphological changes and angiogenesis in the ovary. Biochem. Biophys. Res. Commun. 257: 182-186 Lee, R. C., R. L. Feinbaum and V. Ambros. 1993. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. Lee, Y., K. Jeon, J.-T. Lee, S. Kim and V.K. Kim. 2002. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21: 4663-4670. Lee, Y. S., K. Nakahara, J. W. Pham, K. Kim, Z. He, E. J. Sontheimer and R. W. Carthew. 2004. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117: 69-81. Lehrer, R. I., D. Szklarek, A. Barton, T. Ganz, K. J. Hamann and G. J. Gleich. 1989. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol. 142: 4428-4434. Leland, P. A., K. E. Staniszewski, B.-M. Kim and R. T. Raines. 2001. Endowing human pancreatic ribonuclease with toxicity for cancer cells. J. Biol. Chem. 46: 43095-43102. Leung, R. K. and P. A. Whittaker. 2005. RNA interference: from gene silencing to gene specific therapeutics. Pharmacol. Ther. 107: 222-239. Lawitts, J. A. and Biggers, J. D. 1993. Culture of preimplantation embryos. Methods Enzymol. 225:153–164. Liao, Y.D., Huang, H.C., Leu, Y.J., Wei, C.W., Tang, P.C. and Wang S. C. 2000. Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog). Nucleic Acids Res. 28: 4097-4104. Libonati, M. and G. Gotte. 2004. Oligomerization of bovine ribonuclease A: structural and functional features of its multimers. Biochem. J. 380: 311-327. Matousek, J. 1973. The effect of bovine seminal ribonuclease(AS RNase) on cells of Crocker tumours in mice. Experientia 29: 858-859. Matousek, J., G. Gotte, P. Pouckova, J. Soucek and T. Slavik. 2003. Antitimor activity and other biological actions of oligomers of ribonuclease A. J. Biol. Chem. 278: 23817–23822. Matousek, J., P. Pouckova, D. Hlouskova, M. Zadinova, J. Soucek and J. Skvor. 2004. Effect of hyalurondiase and PEG chain conjugation on the biologic and antitumor activity of RNase A. J. Control. Release 94: 401-410. Matsukura, S., P. A. Jones and D. Takai. 2003. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleci Acids Res. 31: e77. Mishra, A., S. P. Hogean, . J. Lee, P. S. Foster and M. E. Rothenberg. 1999. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Invest. 103: 1719-1727. Miyagishi, M. and K. Taira. 2002. U6 promoter-driven siRNAs with four uridine 3'' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20: 497-500. Molina, H. A., F. Kierszenbaum, K. J. Hamann and G. J. Gleich. 1988. Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. Am. J. Trop. Med. Hyg. 38: 327-334. Montgomery, M. K. and A. Fire. 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 14: 255-258. Morita, T., A. Sanda, Y. Takizawa, K. Ohgi and M. Irie. 1987. Distribution of a kidney acid-ribonuclease-like enzyme and the other ribonucleases in bovine orgns and body fluids. Agri. Biol. Chem. 51: 2751-2761. Nitto, T., K. D. Dyer, R. A. Mejia, J. Bystrom, T. A. Wynn and H. F. Rosenberg. 2004. Characterization of the divergent eosinophil ribonuclease, mEar 6, and its expression in response to Schistosoma mansoni infection in vivo. Genes Immun. 5: 668-674. Nobile, V., B. L. Vallee and R. Shapiro. 1996. Characterization of mouse angiogenin-related protein: Implications for functional studies on angiogenin. Proc. Natl. Acad. Sci. U.S.A. 93: 4331-4335. Nykanen, A., B. Haley, P. D.Zamore. 2001. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107: 309-321. Page, R. L., R. S. Canseco, C. G. Russel, J. L. Johnson, W. H. Velander and F. C. Gwazdauskas. 1995. Transgene detection during early murine embryonic development after pronuclear microinjection. Transgen. Res. 4: 12-17. Paradis, F., C. Vigneault, C. Robert and M. A. Sirard. 2005. RNA interference as a tool to study gene function in bovine oocytes. Mol. Repord. Dev. 70: 111-121. Pavlakis, N. and N. J. Vogelzang. 2006. Ranpirnase--an antitumour ribonuclease: its potential role in malignant mesothelioma. Expert. Opin. Biol. Ther. 6: 391-399. Peracaula, R., K. R. Cleary, J. Lorenzo, R. D. Llorens and M. L. Frazier. 2000. Human pancreatic ribonuclease 1: expression and distribution in pancreatic adenocarcinoma. Cancer 89: 1252-1258. Poy, M. N., L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P. E. Macsonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman and M. Stoffel.2004. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226-230. Pillai, R. S., S. N. Bhattacharyya, C. G. Artus, T. Zoller, N. Congot, E. Bertrand and W. Filipowicz. 2005. Inhibition by let-7 microRNA in human cells. Seience 309: 1573-1976. Qin, X. F., D. S. An, I. S. Chen and D. Baltimore. 2003. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. U.S.A. 100: 183-188. Reinhart, B. J., F. J. Slack, M. Basson, A. E. Pasquine, J. C. Bettinger, A. E. Rougvie, H. R. Horvitz and G. Ruvken. 2000The nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 403: 901-906. Reynolds, A., D. Leake, Q. Boese, S. Scaringe, W. S. Marshall and A. Khvorova. 2004. Rational siRNA design for RNA interference. Nat. Biotechnol. 22: 326-330. Riordan, J. F. 1997. Structure and function of angiogenin. In: D’ Alessio G. and Riordan J. F. (eds) Ribonuclease, structures and functions. Academic Press, San Diego, CA, pp. 445-489. Rosenberg, H. F. 1995. Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J. Biol. Chem. 270: 7876-7881. Rosenberg, H. F. 1998. The eosinphil ribonucleases. CMLS, Cell. Mol. Life Sci. 54: 795-803. Rui, Y., Y. Qin, I. G. Macara and B. R. Cullen. 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dve. 17: 3011-3016. Sagata, N. 1996. The roles of the Mos-MAPK pathway in oocyte meiosis and cellular transformation. Tanpakushitsu kakusan koso Protein, nucleic acid, Enzyme 41: 1847-1855. Samuelson, L. C., K. Weibauer, G. Howard, R. M. Schmid, D. Koeplin and M. H. Meisler. 1991. Isolation of the murine ribonuclease gene Rib-1: structure and tissue specific expression in pancreas and parotid gland. Nucleic Acids Res. 19: 6935-6941. Shapiro, R., E. A. Fox and J. F. Riordon. 1989. Role of lysines in human angiogenin: chemical modification and site-directed mutagenesis. Biochemistry 26: 1726-1732. Shapiro, R., J. F. Riordon and B. L. Vallee. 1986. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry 25: 3527-3532. Singhania, N. A., K. D. Dyer, J. Zhang, M. S. Deming, C. A. Bonville, J. B. Domachowske and H. F. Rosenberg. 1999. Rapid evolution of the ribonuclease A superfamily: adaptive expansion of independent gene clusters in rats and mice. J. Mol. Evol. 49: 721-728. Slavik, T., J. Matousek, J. Fulka and R. T. Raines. 2000. Effect of bovine seminal ribonuclease and bovine pancreatic ribonuclease A on bovine oocyte maturation. J. Exp. Zool. 287: 394-399. Snyder, M. R. and G. J. Gleich. 1997. Eosinophil-associated ribonuclease. In: D’ Alessio G. and Riordan J. F. (eds) Ribonuclease, structures and functions. Academic Press, San Diego, CA, pp. 425-444. Soares, M. L, S. Haraguchi, M.-E. Torres-Padilla, T. Kalmar, L. Carpenter, G. Bell, A. Morrison, C. J. Ring, N. J. Clarke, D. M Glover and M. Zernicka-Goetz. 2005. Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi. BMC Dev. Biol. 5: 28. Strydom, D. J., M. D. Bond and B. L. Vallee. 1997. An angiogenic protein from bovine serum and milk--purification and primary structure of angiogenin-2. Eur. J. Biochem. 247: 535-544. Sugiyama, T., H. Cam, A. Verdel, D. Moazed and S .I. S. Grewa. 2005. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. U.S.A. 102:152-157. Sui, G., C. Soohoo, E. B. Affar, F. Gay , Y. Shi, W. C. Forrester and Y. Shi. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99:5515-5520. Tuschi, T., P. D. Zamore, R. Lehmann, D. P. Bartel and P. A. Sharp. 1999. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13: 3191-3197. Vescia, S., D. Tramontano, G. Augsti-Tocco, and G. D’ Alessio. 1980. In vitro studies on selective inhibition of tumors cell growth be seminal ribonuclease. Cancer Res. 40: 3740-3744. Voss, A. K. and J. Hahn. 1990. Gene transfer in laboratory animals. Dtsch Tieraztl Wochenschr. 96: 59-62. Wang, Z., L. Ren, X. Zhao, T. Hung, A. Meng, J. Wang and Y. G. Chen. 2004. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J. Virol. 78:7523-7527. Wei, C. W., C. C. Hu, C. H. Tang, M. C. Lee and J. J. Wang. 2002. Induction of differentiation rescues HL-60 cells from Rana catesbeiana ribonuclease-induced cell death. FEBS Lett. 531: 421-426. Wianny, F. And M. Zernicka-Goetz. 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. cell Biol. 2: 70-75. Yang, D., H. F. Rosenberg, Q. Chen, K. D. Dyer, K. Kurosaka and J. J. Oppenheim. 2003. Eosinophil-derived neurotoxin(EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102: 3396-3403. Yoshinari, K., M. Miyagishi, K. Taira. 2004. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res. 32: 691-699. Youle, R. J. and G. D’ Alession. 1997. Antitumor RNases. In: D’ Alessio G. and Riordan J. F. (eds) Ribonuclease, structures and functions. Academic Press, San Diego, CA, pp. 491-514. Zamore, P. D., T. Tuschl, P. A. Sharp and D. P. Bartel. 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25-33. Zhang, J., K. D. Dyer and H. F. Rosenberg. 2000. Evolution of the rodent eosinphil-associated RNase gene family by rapid gene sorting and positive selection. Proc. Natl. Acad. Sci. U.S.A.. 97: 4701-4706. Zhang, J., K. D. Dyer and H. F. Rosenberg. 2002. RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res. 30: 1169-1175. Zhang, Y., J. B. Ruben and M. W. Pardridge. 2003. in vivo knockdown of gene expression in brain cencer with intravenous RNAi in adult rats. J. Gene Med. 5: 1039-1045. Zhao, Y., E. Samal and D. Srivastava. 2005. Serum response factor regulates a muscle-specific microRNA that target Hand2 during cardiogenesis. Nature 436: 214-220. Zhao, W., E. Confalone, H. J. Breukelman, M. P. Sasso, P. A. Jekel, E. Hodge, A. Furia and J. J. Beintema. 2001. Ruminant brain ribonucleases: expression and evolution. Biochim. Biophys. Acta. 1547: 95-103.
核糖核酸干擾作用(RNA interference, RNAi)為利用與內源性mRNA互補之雙股RNA(double stranded RNA, dsRNA)抑制特定基因表現之技術。而胰臟核糖核酸水解酵素(pancreatic ribonuclease, RNase 1)為RNase A家族之一員,可表現於9.5日齡之小鼠胚,但對其於早期胚發育之影響尚未瞭解。本研究除分析RNase 1於小鼠不同器官之表現外,擬藉由構築抑制RNase 1表現之載體,探討RNase 1對於早期鼠胚發育之影響。試驗一分別自八週齡ICR母鼠之不同組織器官抽取總RNA,經RT-PCR分析其RNase 1之表現,發現RNase 1於胰臟表現最多,其次依序分別為胃、卵巢、腎臟和心臟。試驗二於RNase 1 mRNA序列中挑選出6個適當之序列片段,分別構築於由U6啟動子(promoter)驅動之載體中,使其產製短的髮夾彎RNA(small hairpin RNA, shR-1~shR-6)。經轉染(transfection)至小鼠內皮胰臟細胞株(MS1 cell line)72 h後抽取其總RNA,以反轉錄聚合酶鏈鎖反應(reverse transcription polymerase chain reaction, RT-PCR)分析RNase 1之表現。結果顯示shR-1之構築最具抑制效果。試驗三利用顯微注射將shR-1中RNAi表現片段(U6-shR-1)導入小鼠原核期胚內,觀察其對胚後續發育能力之影響。經體外培養72 h,注射TE buffer或U6-shR-1片段之胚分裂率顯著低於未經任何處理之對照組(77與74% vs. 98%,P<0.05),而注射TE buffer與對照組之胚發育到桑椹期與囊胚期之百分比並無顯著差異(69% vs. 88%),但注射U6-shR-1者則顯著低於對照組(50% vs. 88%,P<0.05),顯示注射此外源性基因構築對早期鼠胚之發育有不良影響。將注射U6-shR-1之鼠胚移置到5隻代理孕母體內(N = 69),其中一隻於胚齡11.5天時犧牲,發現其子宮具有3個發育中止胚;其餘四隻代理孕母於懷孕期結束時,有兩隻分別產下兩隻仔鼠,但經PCR分析後,此四隻仔鼠之基因組並無U6-shR-1片段之嵌入。本研究結果顯示,小鼠RNase 1可表現於部份成體組織器官中,而本試驗所構築之dsRNA雖可有效抑制細胞株RNase 1之表現,但對於調控小鼠胚RNase1表現之效果與RNase1在早期胚發育所扮演之生理功能仍待進一步釐清。

RNA interference (RNAi), a sequence-specific gene silencing mechanism, has been developed to knock down cognate genes mediated by 21-23 nucleotide double-stranded RNAs (dsRNAs) homologous to target gene sequences. The pancreatic ribonulease, RNase 1, is a member of RNase A superfamily. It has been shown that RNase 1 expresses in mouse embryos at 9.5 d.p.c. and beyond, but little is known about its effects on the development of mouse embryos. Hence, the aim of this study was to investigate the expression profile of RNase 1 in the adult mouse tissues. Additionally, the physiological function of RNase 1 in the development of mouse embryos was examined by the constructed RNAi vectors for knocking down the expression of RNase 1. In Experiment 1, total RNAs from various organs of adult female ICR mice at 8 weeks of age were extracted and reverse transcription polymerase chain reaction (RT-PCR) was conducted to analyze the expression of RNase 1. The highest level of RNase 1 expression was in the pancreas, and in the stomach, ovary, kidney and the heart in sequence. In Experiment 2, six different 19-nucletide fragments of RNase 1 were chosen to construct RNAi vectors, from which the short hairpin RNAs (shRNAs) were produced by mouse U6 promoter. These vectors, designated as shR-1 to shR-6, were transfected into mouse pancreatic cell line, MS1, respectively. Total RNAs of transfected cells were extracted 72 h after transfection and the efficiency of RNAi from each construct was evaluated by RT-PCR. Results showed that shR-1 was the most effective construct in knocking down RNase 1 expression to 94% extent. In Experiment 3, the U6-shR-1 fragment digested from shR-1 vector was injected into the pronuclei of mouse zygotes. The cleavage rates in the U6-shR-1-injected and TE buffer-injected groups were significantly lower than that in the uninjected control group after 72 h culture in vitro (77 and 74% vs. 98%, P < 0.05). No significant differences of morula/blastocyst formation were found between TE buffer and control groups (69% vs. 88%, P > 0.05), but the development of morula/blastocyst in the U6-shR-1-injected group was significantly decreased, compared to the control group (50% vs. 88%, P < 0.05). The defective effect of U6-shR-1 on the development of preimplantation embryos was demonstrated. The U6-shR-1-injected embryos (N=137) developed to the morula and blastocyst stages (N=69) after 72 h culture in vitro were transferred into five pseudopregnant mice. One foster mouse was sacrificed at Day 11.5 of pregnancy, and three developed-arrested embryos were recovered. Four pups were born from two of the rest foster mothers. However, none of them carried the U6-shR-1 insert after PCR analysis. In this study, we found several other organs, including stomach, ovary, kidney and heart, also express pancreatic RNase 1 in mice. Six RNase 1-RNAi expression vectors with various inhibitory efficiency in MS1 cells were constructed. Introduction of shRNA targeting RNase 1 into mouse zygotes might be defective to the development of preimplantation embryos. The influence of RNase 1 on the postimplantation development requires further investigation.
其他識別: U0005-2807200612101900
Appears in Collections:動物科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.