Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2551
DC FieldValueLanguage
dc.contributor黃宜正zh_TW
dc.contributor邱顯俊zh_TW
dc.contributor.advisor陳昭亮zh_TW
dc.contributor.author陳燕銘zh_TW
dc.contributor.authorChen, Yan-Mingen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-05T11:43:32Z-
dc.date.available2014-06-05T11:43:32Z-
dc.identifierU0005-2801201118241300zh_TW
dc.identifier.citation參考文獻 [1] 井澤實,杜光中編譯,精密定位技術及設計技術,建宏出版社,1995。 [2] T. Oiwa, and T. Sugimoto,“Shape Optimization for Flexure Hinges,”精密工學會誌,Vol. 63, No. 10, 1997, pp. 1454-1458. [3] M. Patrascu, and S. Stramigioli, “Stick-slip Actuation of Electrostatic Stepper Micropositioners for Data Storage-the μwalker,” Proceeding of the 2005 International Conference on MEMS, NANO and Smart Systems, 24-27, July 2005, pp. 81-86. [4] P. E. Tenzer, and R. B. Mrad, “A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 2, June 2004, pp. 427- 435. [5] Z. Gong, H. L. Ho, G. Yang, and W. Lin, “Experimental-model-based Precision Control of a Piezoelectric Actuated Flexure Stage,” Proceeding of the International Conference on Automation Science and Engineering, 1-2, August 2005, pp. 124~129. [6] J.M. Paros, and L. Weisbord,, “How to Design Flexure Hinge”, Machine Design, Vol. 37 , Nov. 1965, pp. 151~156. [7] Q. Xu and Y. Li, “Mechanical Design of Compliant Parallel, Micromanipulators for Nano Scale Manipulation”, Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18 - 21, 2006. [8] K.B. Choi, D.H. Kim and J.J. Lee, “Ultraprecision Flexure Stage Driven by Piezoelectric Elements,” SICEICASE International Joint Conference, 2006, pp. 1394~1397. [9] P. Gao, S.-M. Swei, and Z. Yuan, “A New Piezo-driven Precision Micropositioning Stage Utilizing Flexure Hinges,” Nanotechnology, 1996, Vol. 10, pp. 394–398. [10] A.T. Elfizy , G.M. Bone and M.A. Elbestawi , “Design and Control of a Dual-Stage Feed Drive,” International Journal of machine Tools and Manufacture ,Vol. 45, 2005, pp. 153–165. [11] 李一民,六自由度微定位平台之設計與分析,碩士論文,中興大學機械系研究所,中華民國九十五年六月。 [12] 張善岳,六軸微定位平台之設計與分析,碩士論文,中興大學機械學系研究所,中華民國九十七年七月。 [13] R. F. Fung and W. C. Lin, “System Identification of a Novel 6-Dof Precision Positioning Table”, Sensors and Actuators, A: Physical, Vol. 150, No. 2,March 2009, pp. 286-295. [14] Y. K. Yong, T. F. Lu and D. C. Handley, “Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations”, Precision Engineering ,Vol. 32, No. 2, April 2008, pp. 63-70. [15]Y. K. Yong and T. F. Lu, “The Effect of the Accuracies of Flexure Hinge Equations on the Output Compliances of Planar Micro-motion Stages”, Mechanism and Machine Theory, Vol. 43, No. 3, March 2008, pp. 347-363. [16] Y. K. Yong and T. F. Lu, “Kinetostatic Modeling of 3-RRR Compliant Micro-motion Stages with Flexure Hinges”, Mechanisms and Machine Theory, Vol. 44 , No. 6, June 2009, pp. 1156-1157. [17] B. H. Kang, J. T. Y. Wen, N. G. Dagalakis, and J. J. Gorman, “Analysis and Design of Parallel Mechanisms with Flexure Joints,” IEEE Transactions on Robotics,Vol. 21, No. 6, December 2005, pp. 1179-1185. [18] Physik Instrumente, Micropositioning,Nanopositioning, Nano-automation, 2001. [19] D. Stewart, “A Platform with Six Degrees of Freedom,” Proceedings Institution of Mechanical Engineers, Vol. 180, No. 1, 1965, pp. 371–386. [20] N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges, CRC Press, 2003. [21] S.T. Smith, and D.G. Chetwynd, Foundations of Ultraprecision Mechanism Design, CRC Press, New York, 1992, Ch4. [22] MicreE System,“Mercury 3500 Smart Encoder Systems,”2000. [23] National Instruments, “NI 632x Specifications,”2009.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2551-
dc.description.abstract本研究之目的為對精密微定位平台進行設計與研究,以期設計出一六自由度之微定位平台其各線性軸向最大行程能達到10μm,各軸旋轉量能達到50 μrad以上,以及希望平台大小能小於200mm×200mm×50mm。平台採用壓電材料為驅動源,並配合撓性結構設計來達到奈米定位效果,整體設計乃為一體機構、無需組裝並且為同一平面。 本論文的研究步驟主要可分為四個階段,(1)定位平台的概念設計、(2) 定位平台的理論分析、(3) 定位平台的有限元素分析、(4) 定位平台的實體驗證。在設計分析流程中,首先根據設計需求而產生定位平台的設計概念,進而設計出L型鉸鍊組,再針對定位平台的撓性結構進行分析其對平台所造成的自由度、靜態與動態特性,最後將理論分析與ANSYS有限元素分析、自然頻率響應實驗的結果三者互相比較誤差,藉以驗證理論分析流程的正確性,並經由實體實驗量測出平台尺寸為150mm×150mm×45mm,在X方向之最大位移為29.3 μm、Y方向之最大位移為11.94 μm、Z方向之最大位移為6.74 μm、θ之最大旋轉量為405.41 μrad、ψ之最大旋轉量為57.18 μrad、φ之最大旋轉量為63.72 μrad之定位效果。zh_TW
dc.description.abstractThe purpose of this research is trying to design a 6 degree-of-freedom micro-precision positioning stage with monolithic mechanism. It is hoped that this stage can reach 10 μm strokes along linear axis and with rotational angle no less than 50 μrad. The dimension of this positioning stage should be less than 200 mm × 200 mm × 50 mm. By using flexure hinge and piezoelectric actuator, this stage can achieve nanometer resolution. The procedures of this research are divided into the following four steps: (1) conceptual design; (2) theoretical analysis; (3) finite element analysis; and (4) experimental verification. A conceptual design for the positioning stage is conducted according to functional requirements verification in the first beginning. L-shaped flexure hinges are then designed. Mathematical model of this stage is developed, and followed by finite element analysis. Finally, experiments are conducted to verify the design. The actual dimension of the positioning stage is 150 mm × 150 mm × 45 mm. From the experiment results, it shows that the stage can achieve a maximum displacement of 29.3 μm in X axis; 11.94 μm in Y axis; and 6.74 μm in Z axis. The stage can also achieve a maximum rotation of 405.41 μrad around X axis; 57.18 μrad around Y axis; and 63.72 μrad around Z axis.en_US
dc.description.tableofcontents目錄 致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章、緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 6 1-4 研究方法 7 第二章、定位平台設計概念 9 2-1 定位平台功能分析 9 2-2 撓性結構 11 2-3 壓電致動器 14 2-3.1 壓電致動器基本物理性質 15 2-3.2 壓電致動器使用注意事項 17 2-4 平台設計概念 18 第三章、定位平台理論推導 22 3-1 X、Y及θ方向之模態方程式推導 22 3-1.1 X軸模態計算 23 3-1.2 Y軸模態計算 24 3-1.3 θ軸模態計算 25 3-2 Z、ψ及φ方向之動態方程式推導 28 3-2.1 Z軸模態推導 28 3-2.2 ψ軸模態推導 29 3-2.3 φ軸模態推導 30 3-3 定位方程式推導 31 3-3.1 X、Y及θ方向之之定位方程式推導 32 3-3.2 Z、ψ及φ方向之定位方程式推導 33 第四章、定位平台有限元素分析 37 4-1 應力分析 38 4-2 模態分析 46 4-3 最大位移分析 49 第五章、定位平台實驗與分析 53 5-1 實驗架構 54 5-1.1 位移感測器:光學編碼器 54 5-1.2 PC-Based 控制器 57 5-2 平台自然頻率測試實驗 58 5-3 最大位移實驗 61 5-4 結果與討論 66 第六章、結論 69 6-1 結論 69 6-2 未來展望 69 參考文獻 71 附錄A、PZT磁滯曲線圖 74zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2801201118241300en_US
dc.subject微定位平台zh_TW
dc.subjectmicro-precision positioning stageen_US
dc.subject撓性結構zh_TW
dc.subject一體機構zh_TW
dc.subject壓電致動器zh_TW
dc.subjectflexural structureen_US
dc.subjectmonolithic mechanismen_US
dc.subjectpiezoelectric actuatoren_US
dc.title微定位平台之設計與分析zh_TW
dc.titleDesign and Analysis of A Micro-Positioning Stageen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.