Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25586
標題: 奈米碳管對雞巨噬細胞及異嗜球蛋白質表現之影響
The effects of carbon nanotube on protein expression of chicken macrophages and heterophils
作者: 李昀澤
Li, Yun-Ze
關鍵字: 奈米碳管;carbon nanotube;巨噬細胞;異嗜球;蛋白質體;macrophage;heterophil;protemics
出版社: 動物科學系所
引用: 黃建盛。2006。奈米碳管簡介。科學新天地第十三期:1-9。 楊素華,藍慶忠。2004。奈米碳管場發射顯示器。科學發展第382期:57-64。 劉祖誠。2009。過度飼養引發白肉種機與台灣土雞產蛋性能低落-免疫細胞異嗜球相關功能之探討。碩士論文。中興大學。台中。 鄭崇偲。2012。快速評估奈米材料之細胞毒性對動物細胞免疫功能與存活。碩士論文。中興大學。台中。 Alrutz, M. A., A. Srivastava, K. W. Wong, C. D’Souza-Schorey, M. Tang, L. E. Ch’Ng, S. B. Snapper, and R. R. Isberg. 2001. Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1-Arp 2/3 pathway that bypasses N-WASP function. Mol. Microbiol. 42:689-703. Amar, S., K. Oyaisu, L. Li, and T. Van Dyke. 2001. Moesin: a potential LPS receptor on human monocytes. J. Endotoxin Res. 7:281-286. Anderson, C. M., F. H. Zucker, and T. A. Steitz. 1979. Space-filling models of kinase clefts and conformation changes. Science 204:375-380. Arcaro, A. 1998. The small GTP-binding protein Rac promotes the dissociation of gelsolin from actin filaments in neutrophils. J. Biol. Chem. 273:805-813. Arora, K., W. M. Gwinn, M. A. Bower, A. Watson, I. Okwumabua, H. R. MacDonald, M. I. Bukrinsky, and S. L. Constant. 2005. Extracellular cyclophilins contribute to the regulation of inflammatory responses. J. Immunol. 175:517-522. Arora, P. D., and C. A. McCulloch. 1996. Dependence of fibroblast migration on actin severing activity of gelsolin. J. Biol. Chem. 271:20516-20523. Arpin, M., D. Chirivino, A. Naba, and I. Zwaenepoel. 2011. Emerging role for ERM proteins in cell adhesion and migration. Cell Adh. Migr. 5:199-206. Ashby, M. F., P. J. Ferreira, and D. L. Schodek. 2009. Nanomaterials, nanotechnologies and design: chapter 6-nanomaterials: classes and funfamentals. Basu, S., R. J. Binder, R. Suto, K. M. Anderson, and P. K. Srivastava. 2000. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol. 12:1539-1546. Baughman, R. H., A. A. Zakhidov, and W. A. de Heer. 2002. Carbon nanotubes--the route toward applications. Science 297:787-792. Bayram, H., K. Ito, R. Issa, M. Ito, M. Sukkar, and K. F. Chung. 2006. Regulation of human lung epithelial cell numbers by diesel exhaust particles. Eur. Respir. J. 27:705-713. Becker, S., S. Mundandhara, R. B. Devlin, and M. Madden. 2005. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: further mechanistic studies. Toxicol. Appl. Pharmacol. 207:269-275. Beemiller, P., Y. Zhang, S. Mohan, E. Levinsohn, I. Gaeta, A. D. Hoppe, and J. A. Swanson. 2010. A Cdc42 activation cycle coordinated by PI 3-kinase during Fc receptor-mediated phagocytosis. Mol. Biol. Cell 21:470-480. Beinert, H., and M. C. Kennedy. 1993. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 7:1442-1449. Bethune, D. S., C. H. Kiang, M. S. De Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers. 1993. Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605-607.Bianco, A., K. Kostarelos, C. D. Partidos, and M. Prato. 2005. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. (Camb.) 7:571-577. Bianco, A., K. Kostarelos, C. D. Partidos, and M. Prato. 2005. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. (Camb) 7:571-577. Bokoch, G. M. 1995. Regulation of the phagocyte respiratory burst by small GTP-binding proteins. Trends Cell Biol. 5:109-113. Boldt, K., W. Rist, S. M. Weiss, A. Weith, and M. C. Lenter. 2006. FPRL-1 induces modifications of migration-associated proteins in human neutrophils. Proteomics 6:4790-4799. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. Bruce, A., J. Alexander, L. Julian, R. Martin, R. Keith, and W. Peter. 2002. Molecular Biology of the Cell, 4th edition. Garland Science, New York. Brune, K., M. S. Leffell, and J. K. Spitznagel. 1972. Microbicidal activity of peroxidaseless chicken heterophile leukocytes. Infect. Immun. 5:283-287. Carnesecchi, S., C. Deffert, Y. Donati, O. Basset, B. Hinz, O. Preynat-Seauve, C. Guichard, J. L. Arbiser, B. Banfi, J. C. Pache, C. Barazzone-Argiroffo, and K. H. Krause. 2011. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid. Redox. Signal 15:607-629. Carter, J., D. Taylor, and P. A. Baron. 1984. Fibers, Method 7400, Revision #3: 5/15/89. NIOSH manual of analytical methods. Cincinnati, OH: Department of Health and Human Services, National Institute for Occupational Safety and Health. Chandra, H., P. K. Gupta, K. Sharma, A. R. Mattoo, S. K. Garg, W. N. Gade, R. Sirdeshmukh, K. Maithal, and Y. Singh. 2005. Proteome analysis of mouse macrophages treated with anthrax lethal toxin. Biochim. Biophys. Acta 1747:151-159. Chang, C. W., D. Okawa, H. Garcia, A. Majumdar, and A. Zettl. 2007. Nanotube phonon waveguide. Phys. Rev. Lett. 99:045901. Chemin, K., A. Bohineust, S. Dogniaux, M. Tourret, S. Guegan, F. Miro, and C. Hivroz. 2012. Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J. Immunol. 189:2159-2168. Chen, G., T. G. Gharib, H. Wang, C. C. Huang, R. Kuick, D. G. Thomas, K. A. Shedden, D. E. Misek, J. M. Taylor, T. J. iordano, S. L. Kardia, M. D. Iannettoni, J. Yee, P. J. Hogg, M. B. Orringer, S. M. Hanash , and D. G. Beer. 2003. Protein profiles associated with survival in lung adenocarcinoma. Proc. Natl. Acad. Sci. U. S. A. 100:13537-13542. Colvin, V. L. 2003. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21:1166-1170. Cornejo-Garrido, H., D. Kibanova, A. Nieto-Camacho, J. Guzman, T. Ramirez-Apan, P. Fernandez-Lomelin, M. L. Garduno, and J. Cervini-Silva. 2011. Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions. Chemosphere. 84:1329-1335. Corradin, S., J. Mauel, A. Ransijn, C. Sturzinger, and G. Vergeres. 1999. Down-regulation of MARCKS-related protein (MRP) in macrophages infected with Leishmania. J. Biol. Chem. 274:16782-16787. Coso, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind. 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137-1146. Csoka, B., Z. Selmeczy, B. Koscso, Z. H. Nemeth, P. Pacher, P. J. Murray, D. Kepka-Lenhart, S. M. Morris, Jr., W. C. Gause, S. J. Leibovich, and G. Hasko. 2012. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 26:376-386. Dai, H., H. H. Jason, G. R. Andrew, T. C. Daniel, and E. S. Richard. 1996. Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147-150. Dalton, A. B., S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman. 2003. Super-tough carbon-nanotube fibres. Nature 423:703. Daniel, C. L. 2002. Introduction to Proteomics-Tools for the New Bioloogy. Humana Press. New York. Danley, D. E., T. H. Chuang, and G. M. Bokoch. 1996. Defective Rho GTPase regulation by IL-1 beta-converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor. J. Immunol. 157:500-503. Deng, X., D. Xiong, Y. Wang, W. Chen, Q. Luan, H. Zhang, Z. Jiao, and M. Wu. 2010. Water soluble multi-walled carbon nanotubes enhance peritoneal macrophage activity in vivo. J. Nanosci. Nanotechnol. 10:8663-8669. Di Giorgio, M. L., S. Di Bucchianico, A. M. Ragnelli, P. Aimola, S. Santucci, and A. Poma. 2011. Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat. Res. 722:20-31. Dillon, A. C., P. A. Parilla, J. L. Alleman, J. D. Perkins, and M. J. Heben. 2000. Controlling single-wall nanotube diameters with variation in laser pulse power. Chem. Phys. Let. 316:13-18. Dugina, V., I. Zwaenepoel, G. Gabbiani, S. Clement, and C. Chaponnier. 2009. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J. Cell Sci. 122:2980-2988. Dunston, C. R., H. R. Griffiths, P. A. Lambert, S. Staddon, and A. B. Vernallis. 2011. Proteomic analysis of the anti-inflammatory action of minocycline. Proteomics 11:42-51. Dupont, A., C. Tokarski, O. Dekeyzer, A. L. Guihot, P. Amouyel, C. Rolando, and F. Pinet. 2004. Two-dimensional maps and databases of the human macrophage proteome and secretome. Proteomics 4:1761-1778. Evans, M. J., A. Saghatelian, E. J. Sorensen, and B. F. Cravatt. 2005. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat. Biotechnol. 23:1303-1307. Farnell, M. B., T. L. Crippen, H. He, C. L. Swaggerty, and M. H. Kogut. 2003. Oxidative burst mediated by toll like receptors (TLR) and CD14 on avian heterophils stimulated with bacterial toll agonists. Dev. Comp. Immunol. 27:423-429. Feng, L., M. Zhu, M. Zhang, X. Jia, X. Cheng, S. Ding, and Q. Zhu. 2013. Amelioration of compound 4,4''-diphenylmethane-bis(methyl)carbamate on high mobility group box1-mediated inflammation and oxidant stress responses in human umbilical vein endothelial cells via RAGE/ERK1/2/NF-κB pathway. Int. Immunopharmacol. 15:206-216. Fernandez, D., A. Horrillo, C. Alquezar, C. Gonzalez-Manchon, R. Parrilla, and M. S. Ayuso. 2013. Control of cell adhesion and migration by podocalyxin. Implication of Rac1 and Cdc42. Biochem. Biophys. Res. Commun. 432:302-307. Flint, M. S., R. A. Budiu, P. N. Teng, M. Sun, D. B. Stolz, M. Lang, B. L. Hood, A. M. Vlad, and T. P. Conrads. 2011. Restraint stress and stress hormones significantly impact T lymphocyte migration and function through specific alterations of the actin cytoskeleton. Brain Behav. Immun. 25:1187-1196. Gao, Y., N. V. Gopee, P. C. Howard, and L. R. Yu. 2011. Proteomic analysis of early response lymph node proteins in mice treated with titanium dioxide nanoparticles. J. Proteomics 74:2745-2759. Gautreau, A., D. Louvard, and M. Arpin. 2000. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150:193-203. Gilbert, R. O., C. A. Kim, and A. Yen. 1992. Modulation, in vivo and in vitro, of surface expression of CD18 by bovine neutrophils. Am. J. Vet. Res. 53:1675-1678. Guo, T. P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley. 1995. Self-Assembly of Tubular Fullerenes. J. Phys. Chem. 99:10694-10697. Hall, A. 1992. Ras-related GTPases and the cytoskeleton. Mol. Biol. Cell 3:475-479. Hara, M. R., N. Agrawal, S. F. Kim, M. B. Cascio, M. Fujimuro, Y. Ozeki, M. Takahashi, J. H. Cheah, S. K. Tankou, L. D. Hester, C. D. Ferris, S. D. Hayward, S. H. Snyder, and A. Sawa. 2005. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7:665-674. Harmon, B. G. 1998. Avian heterophils in inflammation and disease resistance. Poult. Sci. 77:972-977. Haudek,V. J., A. Slany, N. C. Gundacker, H. Wimmer, J. Drach, and C. Gerner. 2009. Proteome maps of the main human peripheral blood constituents. J. Proteome Res. 8:3834-3843. Havlis, J., H. Thomas, M. Sebela, and A. Shevchenko. 2003. Fast-response proteomics by accelerated in-gel digestion of proteins. Anal. Chem. 75:1300-1306. He, H., M. B. Farnell, and M. H. Kogut. 2003. Inflammatory agonist stimulation and signal pathway of oxidative burst in neonatal chicken heterophils. Comp. Biochem. Physiol. A 135:177-184. He, X., S. H. Young, D. Schwegler-Berry, W. P. Chisholm, J. E. Fernback, and Q. Ma. 2011. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem. Res. Toxicol. 24:2237-2248. Heine, S. J., D. Olive, J. L. Gao, P. M. Murphy, M. I. Bukrinsky, and S. L. Constant. 2011. Cyclophilin A cooperates with MIP-2 to augment neutrophil migration. J. Inflamm. Res. 4:93-104. Hirano, S., S. Kanno, and A. Furuyama. 2008. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol. Appl. Pharmacol. 232:244-251. Hitosugi, T., L. Zhou, S. Elf, J. Fan, H. B. Kang, J. H. Seo, C. Shan, Q. Dai, L. Zhang, J. Xie, T. L. Gu, P. Jin, M. Alečković, G. LeRoy, Y. Kang, J. A. Sudderth, R. J. DeBerardinis, C. H. Luan, G. Z. Chen, S. Muller, D. M. Shin, T. K. Owonikoko, S. Lonial, M. L. Arellano, H. J. Khoury, F. R. Khuri, B. H. Lee, K. Ye, T. J. Boggon, S. Kang, C. He, and J. Chen. 2012. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22:585-600. Hone, J., B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer. 2000. Quantized phonon spectrum of single-wall carbon nanotubes. Science 289:1730-1733. Huang, S. Y., J. H. Lin, Y. H. Chen, C. K. Chuang, E. C. Lin, M. C. Huang, H. S. Sun, and W. C. Lee. 2005. A reference map and identification of porcine testis proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 5:4205-4212. Huang, S. Y., Y. H. Chen, S. H. Teng, I. C. Chen, L. L. Ho, and C. F. Tu. 2006. Protein expression of lymphocytes in HLA-DR transgenic pigs by a proteomic approach. Proteomics 6:5815-5825. Hughes, T. V., and C. R. Chambers. 1889. Manufacture of Carbon Filaments. U.S. Patent. No. 405, 480. Ijima, S. 1991. Helical microtubules of graphite carbon. Nature 354:56.Lewinski, N., V. Colvin, and R. Drezek. 2008. Cytotoxicity of nanoparticles. Small 4:26-49. Ijima, S., and T. Ichihashi. 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603-605. Iontcheva, I., S. Amar, K. H. Zawawi, A. Kantarci, T. E. Van Dyke. 2004. Role for moesin in lipopolysaccharide-stimulated signal transduction. Infect. Immun. 72:2312-2320. Jang, S. I., H. S. Lillehoj, S. H. Lee, D. K. Kim, M. Pages, Y. H. Hong, W. Min, and E. P. Lillehoj. 2011. Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host. Vaccine 29:8998-9004. Jarvis, M., M. Marzolini, X. N. Wang, G. Jackson, L. Sviland, and A. M. Dickinson. 2003. Heat shock protein 70: correlation of expression with degree of graft-versus-host response and clinical graft-versus-host disease. Transplantation 76:849-853. Jia, G., H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo. 2005. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39:1378-1383. Jin, Z. G., M. G. Melaragno, D. F. Liao, C. Yan, J. Haendeler, Y. A. Suh, J. D. Lambeth, and B. C. Berk. 2000. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ. Res. 87:789-796. Johne, B., M. K. Fagerhol, T. Lyberg, H. Prydz, P. Brandtzaeg, C. F. Naess-Andresen, and I. Dale. 1997. Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol. Pathol. 50:113-123. Jortner, B. S., and W. R. Adams. 1971. Turpentine-induced inflammation in the chicken. A light and electronmicroscope study, with emphasis on the macrophage, epithelioid cell, and multinucleated giant cell reaction. Avian Dis. 15:533-550. Josip, L. 2011. Introducing proteomics, from concepts to sample separation, mass spectrometry and data analysis. Wiley-Blackwell. West Sussex, UK. Khandani, A., E. Eng, J. Jongstra-Bilen, A. D. Schreiber, D. Douda, P. Samavarchi-Tehrani, and R. E. Harrison. 2007. Microtubules regulate PI-3K activity and recruitment to the phagocytic cup during Fcgamma receptor-mediated phagocytosis in nonelicited macrophages. J. Leukoc. Biol. 82:417-428. Kirch, S. A., P. Sudarsanam, and M. A. Oettinger. 1996. Regions of RAG1 protein critical for V(D)J recombination. Eur. J. Immunol. 26:886-891. Klune, J. R., R. Dhupar, J. Cardinal, T. R. Billiar, and A. Tsung. 2008. HMGB1: Endogenous danger signaling. Mol. Med. 14:476-484. Knaapen, A. M., P. J. Borm, C. Albrecht, and R. P. Schins. 2004. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer 109:799-809. Kogut, M. H., E. D. McGruder, B. H. M.argis, D. M. Corrier, and J. R. DeLoach. 1995. In vivo activation of heterophil function in chicken following injection with Salmonella entertidis-immune lymphokines. J. Leukoc. Biol. 57:56-62. Kong, J., M. Cassell, and H. G. Dai. 1998. Chemical vapor deposition of methane for single-walled carbon nanotubes Chem. Phys. Let. 292:567-574. Kothakota, S., T. Azuma, C. Reinhard, A. Klippel, J. Tang, K. Chu, T. J. McGarry, M. W. Kirschner, K. Koths, D. J. Kwiatkowski, and L. T. Williams. 1997. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294-298. Kumar, S., J. Xu, C. Perkins, F. Guo, S. Snapper, F. D. Finkelman, Y. Zheng, and M. D. Filippi. 2012. Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 120:3563-3574. Lackmann, M., P. Rajasekariah, S. E. Iismaa, G. Jones, C. J. Cornish, S. Hu, R. J. Simpson, R. L. Moritz, and C. L. Geczy. 1993. Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J. Immunol. 150:2981-2991. Lam, C. W., J. T. James, R. McCluskey, and R. L. Hunter. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77:126-134. Langereis, J. D., L. Franciosi, L. H. Ulfman, and L. Koenderman. 2011. GM-CSF and TNFα modulate protein expression of human neutrophils visualized by fluorescence two-dimensional difference gel electrophoresis. Cytokine 56:422-429. Lankes, W. T., and H. Furthmayr. 1991. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc. Natl. Acad. Sci. U. S. A. 88:8297-8301. Lemarchand, P., M. Vaglio, J. Mauel, and M. Markert. 1992. Translocation of a small cytosolic calcium-binding protein (MRP-8) to plasma membrane correlates with human neutrophil activation. J. Biol. Chem. 267:19379-19382. Li, J., F. Yang, G. Guo, D. Yang, and J. D. F. Long. 2010. Preparation of biocompatible multiwalled carbon nanotubes as potential tracers for sentinel lymph nodes. Polym. Int. 59: 169-174. Li, Q. L., D. X. Yuan, and Q. M. Lin. 2004. Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. J. Chromatogr. A. 1026:283-288. Lillie, R. D. 1944. Factors influencing the staining of blood films and the role of methylene violet. J. Lab. Clin. Med. 29:1181-1944. Litman, G. W., J. P. Cannon, and L. J. Dishaw. 2005. Reconstructing immune phylogeny: new perspectives. Nat. Rev. Immunol. 11:886-879. Liu, C., Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus. 1999. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127-1129. Liu, D., L. Wang, Z. Wang, and A. Cuschieri. 2012. Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Res. Lett. 7:361 doi: 10.1186/1556-276X-7-361. Liu, X., L. Sun, M. Yu, Z. Wang, C. Xu, Q. Xue, K. Zhang, X. Ye, Y. Kitamura, and W. Liu. 2009. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cell Microbiol. 11:730-741. Liu, X., X. Ren, X. Deng, Y. Huo, J. Xie, H. Huang, Z. Jiao, M. Wu, Y. Liu, and T. Wen. 2010. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials 31:3063-3070. Lu, J. P. 1997. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79:1297-1300. Maxwell, M. H., and G. W. Robertson. 1998. The avian heterophil leucocyte: a review. World’s Poult. Sci. J. 54:155-178. Maynard, A. D., P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, and V. Castranova. 2004. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health A. 67:87-107. Mercer, R. R., A. F. Hubbs, J. F. Scabilloni, L. Wang, L. A. Battelli, S. Friend, V. Castranova, and D. W. Porter. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part. Fibre Toxicol. 8:21. Migliore, L., D. Saracino, A. Bonelli, R. Colognato,M. R. D''Errico, A. Magrini, A. Bergamaschi, and E. Bergamaschi. 2010. Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ. Mol. Mutagen. 51:294-303. Moncada-Velez, M., A. Velez-Ortega, J. Orrego, I. Santisteban, J. Jagadeesh, M. Olivares, N. Olaya, M. Hershfield, F. Candotti, and J. Franco. 2011. Somatic mosaicism caused by monoallelic reversion of a mutation in T cells of a patient with ADA-SCID and the effects of enzyme replacement therapy on the revertant phenotype. Scand. J. Immunol. 74:471-481. Morisaki, T., T. Goya, H. Toh, K. Nishihara, and M. Torisu. 1991. The anti-Mac-1 monoclonal antibody inhibits neutrophil sequestration in lung and liver in a septic murine model. Clin. Immunol. Immunopathol. 61:365-375. Morrow, D. A., Y. Wang, K. Croce, M. Sakuma, M. S. Sabatine, H. Gao, A. D. Pradhan, A. M. Healy, J. Buros, C. H. McCabe, P. Libby, C. P. Cannon, E. Braunwald, and D. I. Simon. 2008. Myeloid-related protein 8/14 and the risk of cardiovascular death or myocardial infarction after an acute coronary syndrome in the pravastatin or atorvastatin evaluation and infection therapy: Thrombolysis in myocardial infarction (PROVE IT-TIMI 22) trial. Am. Heart J. 155:49-55. Mosser, D. M., and J. P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958-969. Moyes, R. B., M. H. Kogut, R. E. Droleskey, and J. R. DeLoach. 1998. Differential expression of adhesion molecules by chicken heterophils activated in vivo with Salmonella enteritidis-immune lymphokines. Vet. Immunol. Immunopathol. 62:83-95. Muller, J., F. Huaux, A. Fonseca, J. B. Nagy, N. Moreau, M. Delos, E. Raymundo-Pinero, F. Beguin, M. Kirsch-Volders, I. Fenoglio, B. Fubini, and D. Lison. 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem. Res. Toxicol. 21:1698-1705. Narayanan, N. K., B. A. Narayanan, and D. W. Nixon. 2004. Resveratrol-induced cell growth inhibition and apoptosis is associated with modulation of phosphoglycerate mutase B in human prostate cancer cells: two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry evaluation. Cancer Detect. Prev. 28:443-452. Neuhoff, V., N. Arold, D. Taube, and W. Ehrhardt. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255-262. Newton, R. A., and N. Hogg. 1998. The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. J. Immunol. 160:1427-1435. Nofech-Mozes, Y., S. I. Blaser, J. Kobayashi, E. Grunebaum, and C. M. Roifman. 2007. Neurologic abnormalities in patients with adenosine deaminase deficiency. Pediatr. Neurol. 37:218-221. Novakova, M., and T. Dolezal. 2011. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response. PLoS One 6:e17741. Oberlin, A., M. Endo, and T. Koyama. 1976. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32:335-349. Odink, K., N. Cerletti, J. Bruggen, R. G. Clerc, L. Tarcsay, G. Zwadlo, G. Gerhards, R. Schlegel, and C. Sorg. 1987. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330:80-82. Ohtsu, M., N. Sakai, H. Fujita, M. Kashiwagi, S. Gasa, S. Shimizu, Y. Eguchi, Y. Tsujimoto, Y. Sakiyama, K. Kobayashi, and N. Kuzumaki. 1997. Inhibition of apoptosis by the actin-regulatory protein gelsolin. EMBO J. 16:4650-4656. Oikonomou, N., A. Thanasopoulou, A. Tzouvelekis, V. Harokopos, T. Paparountas, I. Nikitopoulou, W. Witke, A. Karameris, A. Kotanidou, D. Bouros, and V. Aidinis. 2009. Gelsolin expression is necessary for the development of modelled pulmonary inflammation and fibrosis. Thorax 64:467-475. Palomaki, J., E. Valimaki, J. Sund, M. Vippola, P. A. Clausen, K. A. Jensen, K. Savolainen, S. Matikainen, and H. Alenius. 2011. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 5:6861-6870. Pan, C., S. Xu, H. Zou, Z. Guo, Y. Zhang, and B. Guo. 2005. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 16:263-270. Pan, C. J., D. A. Schmitz, A. K. Cho, J. Froines, and J. M. Fukuto. 2004. Inherent redox properties of diesel exhaust particles: catalysis of the generation of reactive oxygen species by biological reductants. Toxicol. Sci. 81:225-232. Pan, Z. W., S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou, and G. Wang. 1999. Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chem. Phys. Let. 299:97-102. Park, E. J., J. Roh, S. N. Kim, M. S. Kang, Y. A. Han, Y. Kim, J. T. Hong, and K. Choi. 2011. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch. Toxicol. 85:1121-1131. Park, H., and D. Cox. 2009. Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol. Biol. Cell 20:4500-4508. Park, J. S., F. Gamboni-Robertson, Q. He, D. Svetkauskaite, J. Y. Kim, D. Strassheim, J. W. Sohn, S. Yamada, I. Maruyama, A. Banerjee, A. Ishizaka, and E. Abraham. 2006. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 290:917-924. Partridge, M. A., and E. E. Marcantonio. 2006. Initiation of attachment and generation of mature focal adhesions by integrin-containing filopodia in cell spreading. Mol. Biol. Cell 17:4237-4248 Passalacqua, M., A. Zicca, B. Sparatore, M. Patrone, E. Melloni, and S. Pontremoli. 1997. Secretion and binding of HMG1 protein to the external surface of the membrane are required for murine erythroleukemia cell differentiation. FEBS Lett. 400:275-279. Patel, D., S. Ahmad, D. Weiss, V. Gerke, and S. Kuznetsov. 2011. Annexin A1 is a new functional linker between actin filaments and phagosomes during phagocytosis. J. Cell Sci. 124:578-588. Patel, P. C., K. H. Fisher, E. C. Yang, C. M. Deane, and R. E. Harrison. 2009. Proteomic analysis of microtubule-associated proteins during macrophage activation. Mol. Cell Proteomics 8:2500-2514. Pawaria, S., and R. J. Binder. 2012. CD91-dependent modulation of immune responses by heat shock proteins: A role in autoimmunity. Autoimmune Dis. doi: 10.1155/2012/863041. Perez-Aguilar, M. C., L. Goncalves, A. Ibarra, and R. Bonfante-Cabarcas. 2010. Adenosine deaminase as costimulatory molecule and marker of cellular immunity. Invest. Clin. 51:561-571. Perkins, D. N., D. J. Pappin, D. M. Creasy, and J. S. Cottrell. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567. Phongsakorn, C., O. Jelena, B. A. Claire, B. R. Sarah, J. L. Susan, and P. Dusan. 2009. Chicken heterophil extracellular traps (HETs): Novel defense mechanism of chicken heterophils, Vet. Immunol. Immunopathol. 129:126-131. Pinkus, R., L. M. Weiner, and V. Daniel. 1996. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J. Biol. Chem. 271:13422-13429. Porter, D. W., A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B. T. Chen, S. Tsuruoka, M. Endo, and V. Castranova. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136-147. Puellmann, K., W. E. Kaminski, M. Vogel, C. T. Nebe, J. Schroeder, H. Wolf, and A. W. Beham. 2006. A variable immunoreceptor in a subpopulation of human neutrophils. Proc. Natl. Acad. Sci. U. S. A. 103:14441-14446. Pulecio, J., J. Petrovic, F. Prete, G. Chiaruttini, A. M. Lennon-Dumenil, C. Desdouets, S. Gasman, O. R. Burrone, and F. Benvenuti. 2010. Cdc42- mediated MTOC polarization in dendritic cells controls targeted delivery of cytokines at the immune synapse. J. Exp. Med. 207: 2719-2732. Radushkevich, L. V., and V. M. Lukyanovich. 1952. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn. Fisic. Chim. 26:88-95. Radwanska, A., M. Litwin, D. Nowak, D. Baczynska, Y. Wegrowski, F. X. Maquart, and M. Malicka-Blaszkiewicz. 2012. Overexpression of lumican affects the migration of human colon cancer cells through up-regulation of gelsolin and filamentous actin reorganization. Exp. Cell Res. 318:2312-2323. Ralser, M., M. M. Wamelink, A. Kowald, B. Gerisch, G. Heeren, E. A. Struys, E. Klipp, C. Jakobs, M. Breitenbach, H. Lehrach, and S. Krobitsch. 2007. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 6:10. Rammes, A., J. Roth, M. Goebeler, M. Klempt, M. Hartmann, and C. Sorg. 1997. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J. Biol. Chem. 272:9496-9502. Ravichandran, P., S. Baluchamy, R. Gopikrishnan, S. Biradar, V. Ramesh, V. Goornavar, R. Thomas, B. L. Wilson, R. Jeffers,J. C. Hall, and G. T. Ramesh. 2011. Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J. Biol. Chem. 286:19725-19733. Ravichandran, P., S. Baluchamy, B. Sadanandan, R. Gopikrishnan, S. Biradar, V. Ramesh, J. C. Hall, and G. T. Ramesh. 2010. Multiwalled carbon nanotubes activate NF-κB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis 15:1507-1516. Rendon-Mitchell, B., M. Ochani, J. Li, J. Han, H. Wang, H. Yang, S. Susarla, C. Czura, R. A. Mitchell, G. Chen, A. E. Sama, K. J. Tracey, and H. Wang. 2003. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J. Immunol. 170:3890-3897. Ronzani, C., C. Spiegelhalter, J. L. Vonesch, L. Lebeau, and F. Pons. 2011. Lung deposition and toxicological responses evoked by multi-walled carbon nanotubes dispersed in a synthetic lung surfactant in the mouse. Arch. Toxicol. 86:137-149. Ruddon, R. W., and E. Bedows. 1997. Assisted protein folding. J. Biol. Chem. 272:3125-3128. Rutter, J., T. J. James, D. Howat, A. Shock, D. Andrew, P. DeBaetselier, J. Blackford, J. M. Wilkinson, G. Higgs, B. Hughes, and M. K. Robinson. 1994. The in vivo and in vitro effects of antibodies against rabbit β2-integrins. J. Immunol. 153:3724-3733. Ryckman, C., K. Vandal, P. Rouleau, M. Talbot, and P. A. Tessier. 2003. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 170:3233-3242. Sadiq, R., J. A. Bhalli, J. Yan, R. S. Woodruff, M. G. Pearce, Y. Li, T. Mustafa, F. Watanabe, L. M. Pack, A. S. Biris, Q. M. Khan and T. Chen. 2012. Genotoxicity of TiO2 anatase nanoparticles in B6C3F1 male mice evaluated using Pig-a and flow cytometric micronucleus assays. Mutat. Res. 745:65-72. Schrand, A. M., L. Dai, J. J. Schlager, S. M. Hussain, and E. Osawa. 2007. Differential bio compatibly of carbon nanotubes and nanodiamonds. Diamond Relat. Mater.16(12):2118-2123. Schatz, D. G., M. A. Oettinger, and D. Baltimore. 1989. The V(D)J recombination activating gene, RAG-1. Cell 59:1035-1048. Schlegel, J., I. Peters, S. Orrenius, D. K. Miller, N. A. Thornberry, T. T. Yamin, and D. W. Nicholson. 1996. CPP32/apopain is a key interleukin 1 beta converting enzyme-like protease involved in Fas-mediated apoptosis. J. Biol. Chem. 271:1841-1844. Schwarze, P. E., J. Ovrevik, R. B. Hetland, R. Becher, F. R. Cassee, M. Lag, M. Lovik, E. Dybing, and M. Refsnes. 2007. Importance of size and composition of particles for effects on cells in vitro. Inhal. Toxicol. 19:17-22. Sheehan, D. 2007. The potential of proteomics for providing new insights into environmental impacts on human health. Rev. Environ. Health 22:175-194. Sherry, B., N. Yarlett, A. Strupp, and A. Cerami. 1992. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc. Natl. Acad. Sci. U. S. A. 89:3511-3515. Shimogiri, T., S. Miyagawa, E. J. Lee, H. Mannen, S. Okamoto, Y. Maeda, and S. Tsuji. 2002. Linkage mapping of the mitochondrial aconitase (ACO2) gene to chicken chromosome 1. Anim. Genet. 33:312. Shvedova, A. A., E. Kisin, A. R. Murray, V. J. Johnso
摘要: 
奈米碳管是典型的一維奈米粒子,其直徑約3至40 nm,但長度則可達1 μm以上,整齊排列的中空結構使其具機械強度高、耐腐蝕、長寬比例懸殊、高效的熱傳導以及電導體的性質,已被廣泛運用在藥物載體、場發射、能量貯存及原子力顯微鏡等領域。近年來奈米碳管在材料工業與產品應用上逐漸發展,其對人體或動物的生物安全性漸漸被世人關注。本研究之目的在於探討不同濃度奈米碳管對雞巨噬細胞及異嗜球蛋白質表現之影響。以中興大學L2品系母雞血液中分離之巨噬細胞與異嗜球與不同濃度奈米碳管(0、1、10、100 μg/ml)共培養6小時後,進行相關分析。結果顯示,巨噬細胞與異嗜球之細胞存活率隨處理濃度上升而下降(P < 0.05);蛋白質二維電泳分析結果顯示,巨噬細胞與異嗜球分別有12與15個蛋白質點表現量在處理奈米碳管後有顯著改變(P < 0.05),經身分鑑定後,發現此等差異表現蛋白質主要與細胞遷移性與免疫反應有關,顯示雞巨噬細胞與異嗜球在奈米碳管處理後會被活化。生物資訊分析結果顯示,這些差異表現蛋白質主要來自細胞質、與蛋白質結合和細胞代謝程序相關。細胞移動試驗結果則顯示,10 μg/ml的奈米碳管處理組,不論巨噬細胞或異嗜球細胞移動能力皆顯著上升。根據以上結果可知,奈米碳管處理會造成巨噬細胞與異嗜球蛋白質表現受到影響,並造成細胞毒性,進一步影響細胞骨架重塑、細胞移動以及免疫功能,然而其確切機制尚需進一步研究。

Carbon nanotubes (CNT) have been applied in a variety of commercial processes, leading to serious concerns of biosafety for human and animals by the public. The purpose of this study was to investigate possible effects of CNT exposure on chicken macrophages and heterophils as a base to assess the safety of CNT in health. Cell viability, protein expression, and cell migration in chicken macrophages and heterophils were analyzed. After co-incubation with 0, 1, 10, and 100 μg/ml of CNT for 6 hrs, cell viability of macrophages and heterophils decreased in a dose-dependent manner (P < 0.05). Two-dimensional electrophoresis and image analysis revealed that there were 12 protein spots in macrophages and 15 protein spots in heterophils differentially expressed after CNT treatments (P < 0.05). Most the proteins responsive to CNT were related to cell mobility and immune response. Upregulation of these proteins may suggest that heterophils and macrophages were activated during CNT exposure. Gene ontology analyses of the differentially expressed proteins with known identities revealed that most of them are associated with protein binding and cellular metabolic process. Cell migration assay suggested that both macrophages and heterophils showed increased migration in response to 10 μg/ml CNT treatment. In conclusion, results in the study suggested that CNT exposure may affect protein expressions and thereby cause cytotoxicity in chicken macrophages and heterophils and then lead to altered cytoskeleton remodeling, cell migration, and immune functions. However, the exact mechanisms require further studies.
URI: http://hdl.handle.net/11455/25586
其他識別: U0005-2907201317043300
Appears in Collections:動物科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-102-7100037010-1.pdf1.99 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.