Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25591
標題: 於小鼠動情週期不同期別進行超級排卵處理對卵子與胚銘印基因H19與Snrpn維持之影響
The impact of superovulation administration at different estrous cycle stages in mice on the maintenance of imprinted genes, H19 and Snrpn
作者: 林俊廷
Lin, Chun-Ting
關鍵字: 人工生殖技術;ART;超級排卵;甲基化差異區域;銘印;Superovulation;DMR;Imprinting
出版社: 動物科學系所
引用: 林俊廷。2007。小鼠動情週期觀察及陰道抹片檢查。實驗動物飼養管理實習,第七章。屏東科技大學,台灣。 Abdalla, H., Y. Yoshizawa, and S. Hochi. 2009. Active demethylation of paternal genome in mammalian zygotes. J. Reprod. Dev. 55:356-360. Adams, R. L., R. H. Burdon, and J. Fulton. 1983. Methylation of satellite DNA. Biochem. Biophys. Res. Commun. 113:695-702. Anckaert, E., T. Adriaenssens, S. Romero, and J. Smitz. 2009. Ammonium accumulation and use of mineral oil overlay do not alter imprinting establishment at three key imprinted genes in mouse oocytes grown and matured in a long-term follicle culture. Biol Reprod. 2009 . 81:666-673. Anckaert, E., T. Adriaenssens, S. Romero , S. Dremier , and J. Smitz. 2009. Unaltered imprinting establishment of key imprinted genes in mouse oocytes after in vitro follicle culture under variable follicle-stimulating hormone exposure. Int. J. Dev. Biol. 53:541-548. Arnaud, P. 2010. Genomic imprinting in germ cells: imprints are under control. Reproduction. 140:411-423. Auwera, I. V. D., and T. D’Hooghe. 2001. Superovulation of female mice delays embryonic and fetal development. Hum. Reprod. 16:1237-1243. Balhorn, R., B. L. Gledhill, and A. J. Wyrobek . 1977. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry 16:4074-4080. Baltus, G. A., M. P. Kowalski, A. V. Tutter, and S. Kadam. 2009. A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284:6998-7006. Barton, T. S., B. Robaire, and B.F. Hales. 2005. Epigenetic programming in the preimplantation rat embryo is disrupted by chronic paternal cyclophosphamide exposure. Proc. Natl. Acad. Sci. U S A.102:7865-7870. Bestor, T.H. 1992. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 11:2611-2617. Boeke, J., O. Ammerpohl, S. Kegel, U. Moehren, and R. Renkawitz. 2000. The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A. J. Biol. Chem. 275:34963-34967. Bourc''his, D., and T. H. Bestor. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96-99. Bourc''his, D., G. L. Xu, C. S. Lin, B. Bollman, and T.H. Bestor. 2001. Dnmt3L and the establishment of maternal genomic imprints. Science. 294:2536-2539. Buchanan, D. L., T. Kurita, J. A. Taylor, D. B. Lubahn, G. R. Cunha, and P. S. Cooke. 1998. Role of stromal and epithelial estrogen receptors in vaginal epithelial proliferation, stratification, and cornification. Endocrinology 139:4645-4652. Byers, S. L., M. V. Wiles, S. L. Dunn, and R. A. Taft. 2012. Mouse estrous cycle identification tool and images. PLoS One. 7:e35538. Chen, L., D. Wang, Z. Wu, L. Ma, and G. Q. Daley. 2010. Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Res. 20:982-993. Corry, G. N., B. Tanasijevic, E. R. Barry, W. Krueger, and T. P. Rasmussen. 2009. Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res. C Embryo Today. 87:297-313. Davis, T. L., G. J. Yang, J. R. McCarrey, and M. S. Bartolomei. 2000. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet. 9:2885-2894. Denomme M. M., L. Zhang, and M. R. Mann. 2011. Embryonic imprinting perturbations do not originate from superovulation-induced defects in DNA methylation acquisition. Fertil Steril. 96:734-738. Denomme, M. M., C. R. White, C. Gillio-Meina, W. A. Macdonald, B. J. Deroo, G. M. Kidder, and M. R. Mann. 2012. Compromised fertility disrupts Peg1 but not Snrpn and Peg3 imprinted methylation acquisition in mouse oocytes. Front Genet. 3:129. Ellison-Zelski, S. J., and E. T. Alarid. 2010. Maximum growth and survival of estrogen receptor-alpha positive breast cancer cells requires the Sin3A transcriptional repressor. Mol. Cancer. 9:263. Ellison-Zelski, S. J., N. M. Solodin, E. T. Alarid. 2009. Repression of ESR1 through actions of estrogen receptor alpha and Sin3A at the proximal promoter. Mol. Cell Biol. 29:4949-4958. Escargueil, A. E., D. G. Soares, M. Salvador, A. K. Larsen, and J. A. Henriques. 2008. What histone code for DNA repair? Mutat. Res. 658:259-270. Farthing, C. R., G. Ficz, R. K. Ng, C. F. Chan, S. Andrews, W. Dean, M. Hemberger, W. Reik. 2008. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4:e1000116. Fauque, P., P. Jouannet, C. Lesaffre, M. A. Ripoche, L. Dandolo, D. Vaiman, and H. Jammes. 2007. Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev. Biol. doi:10.1186/1471-213X-7-116. Fedoriw, A., J. Mugford, and T. Magnuson. 2012. Genomic imprinting and epigenetic control of development. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a008136. Feil, R. 2009. Epigenetic asymmetry in the zygote and mammalian development. Int. J. Dev. Biol. 53:191-201. Filipponi, D., and R. Feil. 2009. Perturbation of genomic imprinting in oligozoospermia. Epigenetics 4:27-30. Fortier, A. L., F. L. Lopes, N. Darricarrere, J. Martel, and J. M. Trasler. 2008. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum. Reprod. Genet. 17:1653-1665. Fowden, A. L., C. Sibley, W. Reik, M. Constancia. 2006. Imprinted genes, placental development and fetal growth. Horm. Res. 3:50-58. Goll, M. G., T. H. Bestor. 2005. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74:481-514. Ha, C. S., B. S. Joo, S. C. Kim, J. K. Joo, H. G. Kim, and K. S. Lee. 2010. Estrogen administration during superovulation increases oocyte quality and expressions of vascular endothelial growth factor and nitric oxide synthase in the ovary. J. Obstet. Gynaecol. Res. 36:789-795. Haaf, T. 2006. Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Curr. Top Microbiol. Immunol. 310:13-22. Hajkova, P. 2010. Epigenetic reprogramming--taking a lesson from the embryo. Curr. Opin. Cell Biol. 22:342-350. Hajkova, P., S. Erhardt, N. Lane, T. Haaf, O. El-Maarri, W. Reik, J. Walter, M. A. Surani. 2002. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117:15-23. Hammoud, S. S., D. A. Nix, H. Zhang, J. Purwar, D. T. Carrell, and B. R. Cairns. 2009. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473-478. Hata, K., M. Okano, H. Lei, and E. Li. 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 129:1983-1993. Hiura, H., Y. Obata , J. Komiyama , M. Shirai, and T. Kono. 2006. Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11:353-361. Howell, C. Y., T. H. Bestor, F. Ding, K. E. Latham, C. Mertineit, J. M. Trasler, and J. R. Chaillet. 2001. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829-838. Isles, A. R., A. J. Holland. 2005. Imprinted genes and mother-offspring interactions. Early Hum. Dev. 81:73-77. Kageyama, S., H. Liu, N. Kaneko, M. Ooga, M. Nagata, and F. Aoki. 2007. Alterations in epigenetic modifications during oocyte growth in mice. Reproduction. 133:85-94. Kaneda, M., M. Okano, K. Hata, T. Sado, N. Tsujimoto, E. Li, and H. Sasaki. 2004. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900-903. Keverne, B. 2009. Monoallelic gene expression and mammalian evolution. Bioessays. 31:1318-1326. Kobayashi, H., H. Hiura, R. M. John, A. Sato, E. Otsu, N. Kobayashi, R. Suzuki, F. Suzuki, C. Hayashi, T. Utsunomiya, N. Yaegashi, and T. Arima. 2009. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur. J. Hum. Genet. 17:1582-1591. Koh, K. H., H. Xie, A. M. Yu, and H. Jeong.2011. Altered cytochrome P450 expression in mice during pregnancy. Drug Metab. Dispos. 39:165-169. Kurukuti, S., V. K. Tiwari, G. Tavoosidana, E. Pugacheva, A. Murrell, Z. Zhao, V. Lobanenkov, W. Reik, and R. Ohlsson. 2006. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. U S A. 103:10684-10689. Lan, J., S. Hua, Y. Yuan, L. Zhan, X. He, and Y. Zhang. 2011. Methylation patterns in 5'' terminal regions of pluripotency-related genes in mature bovine gametes. Zygote 19:165-169. Laprise, S. L. 2009. Implications of epigenetics and genomic imprinting in assisted reproductive technologies. Mol. Reprod. Dev. 76:1006-1018. Lee, J., K. Inoue, R. Ono, N. Ogonuki, T. Kohda, T. Kaneko-Ishino, A. Ogura, and F. Ishino. 2002. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 2002 129:1807-1817. Li, E., C. Beard, R. Jaenisch. 1993. Role for DNA methylation in genomic imprinting. Nature. 366:362-365. Li, E., T. H. Bestor, and R. Jaenisch. 1992 Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Li, J. Y., D. J. Lees-Murdock, G. L. Xu, and C. P. Walsh. 2004. Timing of establishment of paternal methylation imprints in the mouse. Genomics 84:952-960. Lucifero, D., C. Mertineit, H. J. Clarke, T. H. Bestor, and J. M. Trasler. 2002. Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530-538. Lucifero, D., M. R.Mann, M. S. Bartolomei, and J. M. Trasler. 2004. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet.13:839-849. Lucifero, D., S. La Salle, D. Bourc''his, J. Martel, T. H. Bestor, and J. M. Trasler . 2007. Coordinate regulation of DNA methyltransferase expression during oogenesis. BMC Dev. Biol. 7:36. Manipalviratn, S., A. DeCherney, and J. Segars. 2009. Imprinting disorders and assisted reproductive technology. Fertil. Steril. 91:305-315. Mann, M. R., S. S. Lee, A. S. Doherty, R. I. Verona, L. D. Nolen, R. M. Schultz, and M. S. Bartolomei. 2004. Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131:3727-3735. Market-Velker, B. A., A. D. Fernandes, and M. R. Mann. 2010. Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol. Reprod. 83:938-950. Market-Velker, B. A., L. Zhang, L. S. Magri, A. C. Bonvissuto, and M. R. Mann. 2009. Dual Effects of Superovulation: Loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. doi:10.1093/hmg/ddp465. Mattick, J. S., P. P. Amaral, M. E. Dinger, T. R. Mercer, M. F. Mehler. 2009. RNA regulation of epigenetic processes. Bioessays 31:51-59. McDonel, P., J. Demmers, D. W. Tan, F. Watt, and B. D. Hendrich. 2012. Sin3a is essential for the genome integrity and viability of pluripotent cells. Dev. Biol. 363:62-73. McGrath, J., D. Solter . 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179-183. Mertineit ,C., J. A. Yoder, T. Taketo, D. W. Laird, J. M. Trasler, and T.H. Bestor. 1998. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125:889-897. Morris, K. V. 2009. Non-coding RNAs, epigenetic memory and the passage of information to progeny. RNA Biol. 6:242-247. Nakamura, T., Y. Arai, H. Umehara, M. Masuhara, T. Kimura, H. Taniguchi, T. Sekimoto, M. Ikawa, Y. Yoneda, M. Okabe, S. Tanaka, K. Shiota, and T. Nakano. 2007. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9:64-71. Oakes, C. C., T. L. Kelly, B. Robaire, and J. M. Trasler. 2007. Adverse effects of 5-aza-2''-deoxycytidine on spermatogenesis include reduced sperm function and selective inhibition of de novo DNA methylation. J. Pharmacol. Exp. Ther. 322:1171-1180. Okano, M., D. W. Bell, D. A. Haber, and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247-257. Okano, M., S. Xie, and E. Li. 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 19:219-220. Ouko, L. A., K. Shantikumar, J. Knezovich, P. Haycock, D. J. Schnugh, and M. Ramsay. 2009. Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes: implications for fetal alcohol spectrum disorders. Alcohol Clin. Exp. Res. 33:1615-1627. Pathak, S., M. Saxena, R. D''Souza, N. H. Balasinor. 2010. Disrupted imprinting status at the H19 differentially methylated region is associated with the resorbed embryo phenotype in rats. Reprod. Fertil. Dev. 22:939-948. Paulsen, M., A. C. Ferguson-Smith. 2001. DNA methylation in genomic imprinting, development, and disease. J. Pathol. 195:97-110. Peaston, A. E., B. B. Knowles, and K. W. Hutchison. 2007. Genome plasticity in the mouse oocyte and early embryo. Biochem. Soc. Trans. 35:618-622. Rivera, R. M. 2010. Epigenetic aspects of fertilization and preimplantation development in mammals: lessons from the mouse. Syst. Biol. Reprod. Med. 56:388-404. Ratnam, S., C. Mertineit, F. Ding, C. Y. Howell, H. J. Clarke, T. H. Bestor, J. R. Chaillet, and J. M. Trasler. 2002. Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev. Biol. 245:304-314. Reik, W., J. Walter. 2001. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2:21-32. Robertson, K. D., and A. P. Wolffe. 2000. DNA methylation in health and disease. Nat Rev Genet. 1:11-19. Sato, A., E. Otsu, H. Negishi, T. Utsunomiya, and T. Arima. 2007. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum. Reprod. 22: 26-35. Smith, F. M., A. S. Garfield, A. Ward. 2006. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res. 113:279-91. Stouder, C., S. Deutsch, and A. Paoloni-Giacobino. 2009. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod. Toxicol. 28:536-541. Surani, M. A., S. C. Barton, M. L. Norris. 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548-550. Szabó, P. E., K. Hübner, H. Schöler, and J. R. Mann. 2002. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115:157-160. Tarín, J. J., S. Pérez-Albalá, and A. Cano. Stage of the estrous cycle at the time of pregnant mare''s serum gonadotropin injection affects the quality of ovulated oocytes in the mouse. Mol. Reprod. Dev. 61:398-405. Tarín, J.J., S. Pérez-Albalá, V. Gómez-Piquer, C. Hermenegildo, and A. Cano. 2002. Stage of the estrous cycle at the time of pregnant mare''s serum gonadotropin injection affects pre-implantation embryo development in vitro in the mouse. Mol. Reprod. Dev. 62:312-319. Thatcher, K. N.,S. Peddada,D. H. Yasui, and J. M. Lasalle. 2005. Homologous pairing of 15q11-13 imprinted domains in brain is developmentally regulated but deficient in Rett and autism samples. Hum. Mol. Genet.14:785-797. Tokoro M, S. W. Shin, S. Nishikawa, H. H. Lee, Y. Hatanaka, T. Amano, T. Mitani, H. Kato, M. Anzai, S. Kishigami, K. Saeki, Y. Hosoi, A. Iritani, and K. Matsumoto. 2010. Deposition of acetylated histones by RNAP II promoter clearance may occur at onset of zygotic gene activation in preimplantation mouse embryos. J. Reprod. Dev. 56:607-615. Trapphoff, T., N. El Hajj,U. Zechner, T. Haaf, and U. Eichenlaub-Ritter. 2010. DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum. Reprod. 25:3025-3042. Turner, A. M., and K. V. Morris. 2010. Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques 48:ix-xvi. Wang, Z., L. Xu, F. He. 2010. Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil. Steril. 93:2729-2733. Ward, W. S. 2010. Function of sperm chromatin structural elements in fertilization and development. Mol. Hum. Reprod. 16:30-36. Webster, K. E., M. K. O''Bryan, S. Fletcher, P. E. Crewther, U. Aapola, J. Craig, D. K. Harrison, H. Aung, N. Phutikanit, R. Lyle, S. J. Meachem, S. E. Antonarakis, D. M. de Kretser, M. P. Hedger, P. Peterson, B. J. Carroll, and H. S. Scott. 2005. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A. 102:4068-4073. Wossidlo, M., J. Arand, V. Sebastiano, K. Lepikhov, M. Boiani, R. Reinhardt, H. Schöler, J. Walter. 2010. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29:1877-1888. Wu, S.C.,and Y. Zhang. 2010. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11:607-620. Yasui, D. H., S. Peddada, M. C. Bieda, R. O. Vallero, A. Hogart, R. P. Nagarajan, K. N. Thatcher, P. J. Farnham, and J. M. Lasalle. 2007. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl. Acad. Sci. U S A.104:19416-19421. Yoshizawa, Y., M. Kato, M. Hirabayashi, and S. Hochi. 2010. Impaired active demethylation of the paternal genome in pronuclear-stage rat zygotes produced by in vitro fertilization or intracytoplasmic sperm injection. Mol. Reprod. Dev. 77:69-75. Zhu, N., H. X. Jia, X. K. Liu, X. E. Zhao, Q. Wei, and B. H. Ma. 2012. Measuring the estrus cycle and its effect on superovulation in mice. Zoological Research 33:276-282.
摘要: 
人工生殖技術(assisted reproductive technology, ART)已常態性應用於治療不孕症、動物研究以及家畜生產,但有研究指出,人工生殖技術可能會增加胎兒發育遲緩、早產、體重過輕以及罹患基因銘印相關疾病之風險,而目前研究多指向於進行人工生殖技術中,超級排卵(superovulation)處理為造成銘印基因甲基化混亂之可能原因,但機制尚未明朗。銘印基因為只表現父方或母方同源染色體上之基因,其主要調控方式為於銘印基因啟動子進行甲基化程度,此區域稱為甲基化差異區域(Differentially Methylated Region, DMR)。本研究之目的為探討小鼠於不同動情週期期別,包含發情前期、發情期、發情後期以及間期施以超級排卵,對銘印基因H19與Snrpn啟動子甲基化狀態之影響。母鼠以陰道抹片確認其動情週期期別後,施以超級排卵,收集第二次減數分裂中期(metaphase II, MII)之卵母細胞,一部分進行孤雌激活(pathenogenetically activated, PA)並培養至囊胚期(blastocyst stage),而有些小鼠經超級排卵處理後,配種並收集原核期(pronuclear stage)受精卵培養至囊胚(fertilized blastocyst, FB)階段再進行分析。增殖之H19與Snrpn片段經亞硫酸鈉處理後,進行定序並分析其甲基化狀態與銘印基因CpG island之關聯性。卵母細胞分析結果顯示,母方銘印並未受到超級排卵處理影響;FB組之囊胚顯示具有異常甲基化銘印位點,而於發情後期施以超級排卵之PA組囊胚,其Snrpn銘印區域甲基化有顯著之缺失。本研究結果顯示於受精後,超級排卵可能造成母系產物異常導致銘印基因混亂,但其機制有待更進一步之研究。

Assisted reproductive technology (ART) is routinely applied to the treatments of subfertility in couples, researches in animal models, as well as production of livestocks. However, accumulating evidences indicate that the generations derived from ART may suffer the increased risk of intrauterine growth retardation, premature birth, low birth weight, or genomic imprinting disorders. Imprinted genes show predominant or exclusive transcription from one parental allele only. Methylation of the DNA in regions close to the imprinted genes promoter is thought to play a key role in regulating imprinted gene expression and loss of methylation in these differentially methylated regions (DMR) is associated with loss of imprinting. Therefore, the aim of this study was to investigate the effects of administration of superovulation at different estrous cycle stages, including proestrus, estrus, metestrus and diestrus, on the methylation status of the imprinted genes H19 and Snrpn DMR. Female mice were superovulated according to the vaginal smears. Metaphase II (MII) oocytes were collected. Some of the MII ooctyes were pathenogenetically activated and cultured to the blastocyst stage (PA). Additionally, fertilized pronuclear stage embryos were also collected and cultured to the blastocyst stage (FB). The methylation status of DMR on H19 and Snrpn were analyzed by cloning and sequencing following DNA bisulfite treatment. The results from the analysis of oocytes demonstrated that the maternal imprinting acquisition was not affected by superovulation in both H19 and Snrpn. However, the imprinting patterns in the FB blastocysts showed the aberrant DNA methylation in the imprinting loci, and the PA blastocysts showed the significant differences in the imprinting loss of Snrpn at the metestrus group. Analysis of imprinting CpG islands indicated the correlation among the methylation sites. These results imply that the imprinting disorder caused by superovulation may change the maternal-inherited gene products required for the imprinting maintenance after fertilization.
URI: http://hdl.handle.net/11455/25591
其他識別: U0005-2808201206510600
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.