Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25599
標題: 熱緊迫蛋白質70及禽類非對偶蛋白基因單核苷酸多態型對雞隻在慢性熱緊迫下精液性狀及正常環境溫度下生產性能之影響
Effect of single nucleotide polymorphisms in HSP70 and avUCP genes on semen quality traits during chronic heat stress and production traits under normal environmental temperature in chickens
作者: 彭麟量
Peng, Lin-Liang
關鍵字: 熱緊迫;heat stress;熱緊迫蛋白質70;禽類非對偶蛋白;HSP70;avUCP;SNP
出版社: 動物科學系所
引用: 白火城、吳兩新、林仁壽。2003。家畜內分泌學。藝軒圖書出版社。台北。 季培元。1979。家禽生理學。臺灣商務印書館發行。台北。 陳品蓉。2012。雞冷凍精液製備、繁殖力評估及冷凍前後精子蛋白質差異表現之研究。碩士論文。國立中興大學。台中。 顏圭卿。2001。溫度對台灣土雞公雞之精液性狀與精子熱緊迫蛋白質70之影響。碩士論文。國立中興大學。台中。 Akaboot, P., M. Duangjinda, and Y. Phasuk. 2010. Genetic comparison of functional genes in Red Jungle fowl, Thai native chicken and commercial chicken. Page 49-52 in Proc. 14th AAAP Anim. Sci. Congr., Pingtung, Taiwan. Anckar, J., and L. Sistonen. 2011. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80:1089-1115. Basirico, L., P. Morera, V. Primi, N. Lacetera, A. Nardone, and U. Bernabucci. 2011. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones 16:441-448. Beckham, J. T., G. J. Wilmink, M. A. Mackanos, K. Takahashi, C. H. Contag, T. Takahashi, and E. D. Jansen. 2008. Role of HSP70 in cellular thermotolerance. Lasers Surg. Med. 40:704-715. Berridge, M. J., M. D. Bootman, and H. L. Roderick. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:517-529. Besbes, B., V. Ducrocq, J. L. Foulley, M. Protais, A. Tavernier, M. Tixier-Boichard, and C. Beautnont. Box-Cox transformation of egg-production traits of laying hens to improve genetic parameter estimation and breeding evaluation. Livest. Prod. Sci. 33:313-326. Blesbois, E., I. Grasseau, F. Seigneurin, S. Mignon-Grasteau, M. Saint Jalme, and M. M. Mialon-Richard. 2008. Predictors of success of semen cryopreservation in chickens. Theriogenology 69:252-261. Bordas, A., and F. Minvielle. 1999. Patterns of growth and feed intake in divergent lines of laying domestic fowl selected for residual feed consumption. Poult. Sci. 78:317-323. Bordas, A., M. Tixier-Boichard, and P. Merat. 1992. Direct and correlated responses to divergent selection for residual food intake in Rhode Island Red laying hens. Br. Poult. Sci. 33:741-754. Bottje, W. G., and P. C. Harrison. 1985. The effect of tap water, carbonated water, sodium bicarbonate, and calcium chloride on blood acid-base balance in cockerels subjected to heat stress. Poult. Sci. 64:107-113. Box, G. E. P., and D. R. Cox. 1964. An analysis of transformations. J. R. Stat. Soc. B26:211-243. Bruce, J. L., B. D. Price, C. N. Coleman, and S. K. Calderwood. 1993. Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res. 53:12-15. Burrows, W. H., and J. P. Quinn. 1937. Artificial insemination of chicken and turkeys. Poult. Sci. 14:251-254. Byerly, T. C., J. W. Kessler, R. M. Gous, and O. P. Thomas. 1980. Feed requirements for egg production. Poult. Sci. 59:2500-2507. Cahaner, A., N. Deeb, and M. Gutman. 1993. Effects of the plumage-reducing naked neck (Na) gene on the performance of fast-growing broilers at normal and high ambient temperatures. Poult. Sci. 72:767-775. Cahaner, A., J. A. Ajuh, M. Siegmund-Schultze, Y. Azoulay, S. Druyan, A. V. Zarate. 2008. Effects of the genetically reduced feather coverage in naked neck and featherless broilers on their performance under hot conditions. Poult. Sci. 87:2517-2527. Chen, C. F., and M. Tixier-Boichard. 2003. Estimation of genetic variability and selection response for clutch length in dwarf brown-egg layers carrying or not the naked neck gene. Genet. Sel. Evol. 35:219-238. Chen, C. F., N. Z. Huang, D. Gourichon, Y. P. Lee, M. Tixier-Boichard, and A. Bordas. 2008. Effect of introducing the naked neck gene in a line selected for low residual feed consumption on performance in temperate or subtropical environments. Poult. Sci. 87:1320-1327. Cheng, W. J., Q. L. Li, C. F. Wang, H. M. Wang, J. B. Li, Y. M. Sun, J. F. Zhong. 2009. Genetic polymorphism of HSP70-1 gene and its correlation with resistance to mastitis in Chinese Holstein. Yi Chuan 31:169-174. Collin, A., J. Buyse, P. van As, V. M. Darras, R. D. Malheiros, V. M. Moraes, G. E. Reyns, M. Taouis, and E. Decuypere. 2003. Cold-induced enhancement of avian uncoupling protein expression, heat production, and triiodothyronine concentrations in broiler chicks. Gen. Comp. Endocrinol. 130:70-77. Criscuolo, F., M. Gonzalez-Barroso Mdel, Y. Le Maho, D. Ricquier, and F. Bouillaud. 2005. Avian uncoupling protein expressed in yeast mitochondria prevents endogenous free radical damage. Proc. Biol. Sci. 272:803-810. Dale, N. M., and H. L. Fuller. 1980. Effect of diet composition on feed intake and growth of chicks under heat stress. II. Constant vs. cycling temperatures. Poult. Sci. 59:1434-1441. Dantzer, R. and P. Mormede. 1983. Stress in farm animals: a need for reevaluation. J. Anim. Sci. 57:6-18. Del Vesco, A. P., and E. Gasparino. 2013. Production of reactive oxygen species, gene expression, and enzymatic activity in quail subjected to acute heat stress. J. Anim. Sci. 91:582-587. Dezeure, F., M. Vaiman, and P. Chardon. 1993. Characterization of a polymorphic heat shock protein 70 gene in swine outside the SLA major histocompatibility complex. Biochim. Biophys. Acta 1174:17-26. Dodgson, J. B., H. H. Cheng, and R. Okimoto. 1997. DNA marker technology: a revolution in animal genetics. Poult. Sci. 76:1108-1114. Donker, R. A., M. G. Nieuwland, and A. J. van der Zijpp. 1990. Heat-stress influences on antibody production in chicken lines selected for high and low immune responsiveness. Poult. Sci. 69:599-607. Donoghue, D. J., B. F. Krueger, B. M. Hargis, A. M. Miller, and M. el Halawani. 1989. Thermal stress reduces serum luteinizing hormone and bioassayable hypothalamic content of luteinizing hormone-releasing hormone in hens. Biol. Reprod. 41:419-424. Dridi, S., S. Temim, M. Derouet, S. Tesseraud, and M. Taouis. 2008. Acute cold- and chronic heat-exposure upregulate hepatic leptin and muscle uncoupling protein (UCP) gene expression in broiler chickens. J. Exp. Zool. A Ecol. Genet. Physiol. 309:381-388. Eberhart, D. E., and K. W. Washburn. 1993. Variation in body temperature response of naked neck and normally feathered chickens to heat stress. Poult. Sci. 72:1385-1390. Edens, F. W., and H. S. Siegel. 1975. Adrenal responses in high and low ACTH response lines of chickens during acute heat stress. Gen. Comp. Endocrinol. 25:64-73. Edens, F. W. 1978. Adrenal cortical insufficiency in young chickens exposed to a high ambient temperature. Poult. Sci. 57:1746-1750. El Halawani, M. E., J. L. Silsby, E. J. Behnke, and S. C. Fehrer. 1984. Effect of ambient temperature on serum prolactin and luteinizing hormone levels during the reproductive life cycle of the female turkey (Meleagris gallopavo). Biol. Reprod. 30:809-815. El Hadi, H., and A. H. Sykes. 1982. Thermal panting and respiratory alkalosis in the laying hen. Br. Poult. Sci. 23:49-57. Etches, R. J., T. M. John, and A. M. Verrinder Gibbibins. 2008. Behavioural, physiological, neuroendocrine and molecular responses to heat stress. Page 48-79 in Poultry production in hot climates. 2nd ed. N. J. Daghir, ed Cromwell Press, Trowbridge, UK. Feng, J., M. Zhang, S. Zheng, P. Xie, and A. Ma. 2008. Effects of high temperature on multiple parameters of broilers in vitro and in vivo. Poult. Sci. 87:2133-2139. Feske, S. 2007. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7:690-702. Fox, T. W. 1980. The effects of thiouracil and thyroxine on resistance to heat shock. Poult. Sci. 59:2391-2396. Gao, L., F. X. Jing, J. B. Yang, and J. L. Zhao. 2005. Detection for single nucleotide polymorphisms. Yi Chuan 27:110-122. Han, A. Y., M. H. Zhang, X. L. Zuo, S. S. Zheng, C. F. Zhao, J. H. Feng, and C. Cheng. 2010. Effect of acute heat stress on calcium concentration, proliferation, cell cycle, and interleukin-2 production in splenic lymphocytes from broiler chickens. Poult. Sci. 89:2063-2070. Hedrick, P. W. 2005. Genetics of populations. 3rd ed. Jones and Bartlett Publishers, Sudbury, Massachusetts, United States. pp. 79-90. Hess, R. A., B. L. Hughes, and R. J. Thurston. 1986. Frequency and structure of macrophages and abnormal sperm cells in guinea fowl semen. Reprod. Nutr. 26:39-51. Hillman, P. E., N. R. Scott, and A. Tienhoven. 1985. Physiological responses and adaptations to hot and cold environments. Page 1-71 in Stress Physiology in Livestock. Vol. 3. Poultry. M. K. Yousef, ed. CRC Press, Boca Raton, Florida. Hoeks, J., M. K. Hesselink, and P. Schrauwen. 2006. Involvement of UCP3 in mild uncoupling and lipotoxicity. Exp. Gerontol. 41:658-662. Horst, P. 1989. Native fowl as a reservoir for genomes and major genes with direct and indirect effects on productive adaptability and their potential for tropically oriented breeding plans. Arch. Geflugelkd. 53:93-101. Huang, S. Y., M. Y. Chen, E. C. Lin, H. L. Tsou, Y. H. Kuo, C. C. Ju, and W. C. Lee. 2002. Effects of single nucleotide polymorphisms in the 5''-flanking region of heat shock protein 70.2 gene on semen quality in boars. Anim. Reprod. Sci. 70:99-109. Joubert, R., S. M. Coustard, Q. Swennen, V. Sibut, S. Crochet, E. Cailleau-Audouin, J. Buyse, E. Decuypere, C. Wrutniak-Cabello, G. Cabello, S. Tesseraud, and A. Collin. 2010. The beta-adrenergic system is involved in the regulation of the expression of avian uncoupling protein in the chicken. Domest. Anim. Endocrinol. 38:115-125. Karaca, A. G., H. M. Parker, and C. D. McDaniel. 2002a. Elevated body temperature directly contributes to heat stress infertility of broiler breeder males. Poult. Sci. 81:1892-1897. Karaca, A. G., H. M. Parker, J. B. Yeatman, and C. D. McDaniel. 2002b. Role of seminal plasma in heat stress infertility of broiler breeder males. Poult. Sci. 81:1904-1909. Karaca, A. G., H. M. Parker, J. B. Yeatman, and C. D. McDaniel. 2002c. The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. Br. Poult. Sci. 43:621-628. Kogure, A., T. Yoshida, N. Sakane, T. Umekawa, Y. Takakura, and M. Kondo. 1998. Synergic effect of polymorphisms in uncoupling protein 1 and beta3-adrenergic receptor genes on weight loss in obese Japanese. Diabetologia 41:1399. Kohne, H. J., and J. E. Jones. 1975a. Changes in plasma electrolytes, acid-base balance and other physiological parameters of adult female turkeys under conditions of acute hyperthermia. Poult. Sci. 54:2034-2038. Kohne, H. J., and J. E. Jones. 1975b. Acid-base balance, plasma electrolytes and production performance of adult turkey hens under conditions of increasing ambient temperature. Poult. Sci. 54:2038-2045. Koller, M., T. Hensler, B. Konig, G. Prevost, J. Alouf, and W. Konig. 1993. Induction of heat-shock proteins by bacterial toxins, lipid mediators and cytokines in human leukocytes. Zentralbl Bakteriol. 278:365-376. Korshunov, S. S., V. P. Skulachev, and A. A. Starkov. 1997. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416:15-18. Korte, S. M., J. M. Koolhaas, J. C. Wingfield, and B. S. McEwen. 2005. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev. 29:3-38. Li, Q., J. Han, F. Du, Z. Ju, J. Huang, J. Wang, R. Li, C. Wang, and J. Zhong. 2011. Novel SNPs in HSP70A1A gene and the association of polymorphisms with thermo tolerance traits and tissue specific expression in Chinese Holstein cattle. Mol. Biol. Rep. 38:2657-2663. Lin, H., E. Decuypere, and J. Buyse. 2006. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144:11-17. Lindquist, S., and E. A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631-677. Liu, S., S. Z. Wang, Z. H. Li, and H. Li. 2007. Association of single nucleotide polymorphism of chicken uncoupling protein gene with muscle and fatness traits. J. Anim. Breed. Genet. 124:230-235. Mailloux, R. J. and M. E. Harper. 2011. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 51:1106-1115. Mashaly, M. M., G. L. Hendricks 3rd., M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult. Sci. 83:889-894. May, J. D. 1982. Effect of dietary thyroid hormone on survival time during heat stress. Poult. Sci. 61:706-709. May J. D., and B. D. Lott. 1992. Feed and water consumption patterns of broilers at high environmental temperatures. Poult. Sci. 71:331-336. May, J. D., J. W. Deaton, F. N. Reece, and S. L. Branton. 1986. Effect of acclimation and heat stress on thyroid hormone concentration. Poult. Sci. 65:1211-1213. Mazzi, C. M., J. A. Ferro, M. I. T. Ferro, V. J. M. Savino, A. A. D. Coelho, and M. Macari. 2003. Polymorphism analysis of the hsp70 stress gene in Broiler chickens (Gallus gallus) of different breeds. Genet. Mol. Biol. 26:275-281. McDaniel, C. D., R. K. Bramwell, J. L. Wilson, and B. Howarth. 1995. Fertility of male and female broiler breeders following exposure to elevated ambient temperatures. Poult. Sci. 74:1029-1038. Meltzer, A. 1983. The effect of body temperature on the growth rate of broilers. Br. Poult. Sci. 24:489-495. Mitani, K., H. Fujita, Y. Fukuda, A. Kappas, and S. Sassa. 1993. The role of inorganic metals and metalloporphyrins in the induction of haem oxygenase and heat-shock protein 70 in human hepatoma cells. Biochem. J. 290:819-825. Mitchell, M. A., and A. J. Carlisle. 1992. The effects of chronic exposure to elevated environmental temperature on intestinal morphology and nutrient absorption in the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol. A Comp. Physiol. 101:137-142. Mongin, P. E. 1968. Role of acid-base balance in the physiology of egg-shell formation. Worlds Poult. Sci. J. 24:200-230. Morimoto, R. I., C. Hunt, S. Y. Huang, K. L. Berg, and S. S. Banerji. 1986. Organization, nucleotide sequence, and transcription of the chicken HSP70 gene. J. Biol. Chem. 261:12692-12699. Morrison, S. R. 1983. Ruminant heat stress: effect on production and means of alleviation. J. Anim. Sci. 57:1594-1600. Mujahid, A., K. Sato, Y. Akiba, and M. Toyomizu. 2006. Acute heat stress stimulates mitochondrial superoxide production in broiler skeletal muscle, possibly via downregulation of uncoupling protein content. Poult. Sci. 85:1259-1265. Mujahid, A., Y. Akiba, and M. Toyomizu. 2007. Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein. Poult. Sci. 86:364-371. Mujahid, A., Y. Akiba, and M. Toyomizu. 2009. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R690-R698. Nabben, M., I. G. Shabalina, E. Moonen-Kornips, D. van Beurden, B. Cannon, P. Schrauwen, J. Nedergaard, and J. Hoeks. 2011. Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice. Biochim. Biophys. Acta 1807: 1095-1105. Nordlind, K. 2002. Expression of heat shock proteins in heavy metal-provoked inflamed human skin. Immunopharmacol. Immunotoxicol. 24:383-394. Novero, R. P., M. M. Beck, E. W. Gleaves, A. L. Johnson, and J. A. Deshazer. 1991. Plasma progesterone, luteinizing hormone concentrations, and granulosa cell responsiveness in heat-stressed hens. Poult. Sci. 70:2335-2339. Oh, J. D., H. S. Kong, J. H. Lee, I. S. Choi, S. J. Lee, S. G. Lee, B. D. Sang, C. H. Choi, B. W. Cho, G. J. Jeon, and H. K. Lee. 2006. Identification of novel SNPs with effect on economic traits in uncoupling protein gene of Korean native chicken. Asian-Aust. J. Anim. Sci. 19:1065-1070 Oppert, J. M., M. C. Vohl, M. Chagnon, F. T. Dionne, A. M. Cassard-Doulcier, D. Ricquier, L. Perusse, and C. Bouchard. 1994. DNA polymorphism in the uncoupling protein (UCP) gene and human body fat. Int. J. Obes. Relat. Metab. Disord. 18:526-531. Pelham, H. R. 1984. Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J. 3:3095-3100. Quinteiro-Filho, W. M., M. V. Rodrigues, A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, L. R. Sa, A. J. Ferreira, and J. Palermo-Neto. 2012. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary-adrenal axis activation. J. Anim. Sci. 90:1986-1994. Raimbault, S., S. Dridi, F. Denjean, J. Lachuer, E. Couplan, F. Bouillaud, A. Bordas, C. Duchamp, M. Taouis, and D. Ricquier. 2001. An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds. Biochem. J. 353:441-444. Regnier, J. A., and K. W. Kelley. 1981. Heat- and cold-stress suppresses in vivo and in vitro cellular immune responses of chickens. Am. J. Vet. Res. 42:294-299. Regnier, J. A., K. W. Kelley, and C. T. Gaskins. 1980. Acute thermal stressors and synthesis of antibodies in chickens. Poult. Sci. 59:985-990. Ricquier, D., and F. Bouillaud. 2000. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345:161-179. Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experimentia 18:571-573. Rosenkrans, C., A. Banks, S. Reiter, and M. Looper. 2010. Calving traits of crossbred Brahman cows are associated with Heat Shock Protein 70 genetic polymorphisms. Anim. Reprod. Sci. 119:178-182. Rozenboim, I., E. Tako, O. Gal-Garber, J. A. Proudman, and Z. Uni. 2007. The effect of heat stress on ovarian function of laying hens. Poult. Sci. 86:1760-1765. Ruohonen-Lehto, M. K., M. F. Rothschild, and R. G. Larson. 1993. Restriction fragment length polymorphisms at the heat shock protein HSP70 gene(s) in pigs. Anim. Genet. 24:67-68. Saeki, Y. 1960. Crooked-necked spermatozoa in relation to low fertility in the artificial insemination of fowl. Poult. Sci. 39:1354-1361. Saeki, Y. and K. I. Brown. 1962. Effect of abnormal spermatozoa on fertility and hatchability in the turkey. Poult. Sci. 41:1096-1100. SAS Institute. 2002. The SAS System for Windows. Release 9.1 SAS Inst. Inc., Cary, NC. Schwerin, M., S. Maak, C. Kalbe, and R. Fuerbass. 2001. Functional promoter variants of highly conserved inducible hsp70 genes significantly affect stress response. Biochim. Biophys. Acta 1522:108-111. Schwerin, M., S. Maak, A. Hagendorf, G. von Lengerken, and H. M. Seyfert. 2002. A 3''-UTR variant of the inducible porcine hsp70.2 gene affects mRNA stability. Biochim. Biophys. Acta 1578:90-94. Sharma, P., W. Bottje, and R. Okimoto. 2008. Polymorphisms in uncoupling protein, melanocortin 3 receptor, melanocortin 4 receptor, and pro-opiomelanocortin genes and association with production traits in a commercial broiler line. Poult. Sci. 87:2073-2086. Sharp, F. R., H. Kinouchi, J. Koistinaho, P. H. Chan, and S. M. Sagar. 1993. HSP70 heat shock gene regulation during ischemia. Stroke 24:I72-I75. Singh, H. 1999. Optimizing delivery of genetic merit in subtropical climates through advanced reproductive technologies. Poult. Sci. 78:453-458. Soleimani, A. F., I. Zulkifli, A. R. Omar, and A. R. Raha. 2011. Physiological responses of 3 chicken breeds to acute heat stress. Poult. Sci. 90:1435-1440. Tan, G. Y., L. Yang, Y. Q. Fu, J. H. Feng, and M. H. Zhang. 2010. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poult. Sci. 89:115-122. Teeter, R. G., M. O. Smith, F. N. Owens, S. C. Arp, S. Sangiah, and J. E. Breazile. 1985. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chicks. Poult. Sci. 64:1060-1064 Thannickal, V. J., and B. L. Fanburg. 2000. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279:L1005-L1028. Tixier-Boichard, M., D. Boichard, E. Groeneveld, and A. Bordas. 1995. Restricted maximum likelihood estimates of genetic parameters of adult male and female Rhode Island red chickens divergently selected for residual feed consumption. Poult. Sci. 74:1245-1252. Toyomizu, M., M. Ueda, S. Sato, Y. Seki, K. Sato, and Y. Akiba. 2002. Cold-induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle. FEBS Lett. 529:313-318. Trout, J. M., and M. M. Mashaly. 1994. The effects of adrenocorticotropic hormone and heat stress on the distribution of lymphocyte populations in immature male chickens. Poult. Sci. 73:1694-1698. Ueda, M., K. Watanabe, K. Sato, Y. Akiba, and M. Toyomizu. 2005. Possible role for avPGC-1alpha in the control of expression of fiber type, along with avUCP and avANT mRNAs in the skeletal muscles of cold-exposed chickens. FEBS Lett. 579:11-17. Vignal, A., D. Milan, M. SanCristobal, and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel Evol. 34:275-305. Wang, S. H., C. Y. Cheng, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, and S. Y. Huang. 2013. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology 79:374-382. Washburn, K. W., R. Peavey, and G. M. Renwick. 1980. Relationship of strain variation and feed restriction to variation in blood pressure and response to heat stress. Poult. Sci. 59:2586-2588. Whittow, G. C. 1986 Regulation of body temperature. Page 221-252 in Avian Physiology. P. D. Sturkie, ed.. Springer, New York.. Wilson, H. R., C. J. Wilcox, R. A. Voitle, C. D. Baird, and R. W. Dorminey. 1975. Characteristics of White Leghorn chickens selected for heat tolerance. Poult. Sci. 54:126-130. Xiong, Q., J. Chai, H. Xiong, W. Li, T. Huang, Y. Liu, X. Suo, N. Zhang, X. Li, S. Jiang, and M. Chen. 2013. Association analysis of HSP70A1A haplotypes with heat tolerance in Chinese Holstein cattle. Cell Stress Chaperones:doi 10.1007/s12192-013-0421-3. Yahav, S., A. Straschnow, I. Plavnik, and S. Hurwitz. 1997. Blood system response of chickens to changes in environmental temperature. Poult. Sci. 76:627-633. Yang, L., G. Y. Tan, Y. Q. Fu, J. H. Feng, M. H. Zhang. 2010. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151:204-208. Yenari, M. A., S. L. Fink, G. H. Sun, L. K. Chang, M. K. Patel, D. M. Kunis, D. Onley, D. Y. Ho, R. M. Sapolsky, and G. K. Steinberg. 1998. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol. 44:584-591. Yunis, R., and A. Cahaner. 1999. The effects of the naked neck (Na) and frizzle (F) genes on growth and meat yield of broilers and their interactions with ambient temperatures and potential growth rate. Poult. Sci. 78:1347-1352. Zhang, X., H. Du, and J. Li. 2002. Single nucleotide polymorphism of chicken heat shock protein gene. Proc. 7th World Congr. Genet. Appl. Livest. Prod., Montpellier, France. Zhen, F. S., H. L. Du, H. P. Xu, Q. B. Luo, and X. Q. Zhang. 2006. Tissue and allelic-specific expression of hsp70 gene in chickens: basal and heat-stress-induced mRNA level quantified with real-time reverse transcriptase polymerase chain reaction. Br. Poult. Sci. 47:449-455. Zou, J., Y. Guo, T. Guettouche, D. F. Smith, and R. Voellmy. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471-480. Zulkifli, I., R. T. Dass, and M. T. Norma. 1999. Acute heat stress effects on physiology and fear-related behaviour in red jungle fowl and domestic fowl. Can. J. Anim. Sci. 79:165-170.
摘要: 
在熱帶及亞熱帶地區,熱緊迫是造成養雞產業經濟損失的重要原因之一。熱緊迫導致雞隻之死亡率增加、生長和產蛋性能降低及造成繁殖障礙等負面影響。HSP70扮演分子伴護子的角色,能幫助細胞對抗緊迫造成之傷害,avUCP則與粒線體ROS調控有關,此二基因具有成為選拔耐熱品系分子標記之潛力。因此,本研究的目的在探討HSP70及avUCP基因單核苷酸多態型對慢性熱緊迫環境下雞隻精液性狀及一般飼養狀況下雞隻生長、產蛋與免疫功能之影響。
試驗一選用55隻31週齡L2品系台灣土雞(L2)及選拔低採食殘差洛島紅品系(R-)正反雜交產生之子二代公雞為試驗動物,給予4週32°C、相對溼度55%的持續慢性熱緊迫處理,每週採精評估精子濃度、形態、精液量、精子活力及存活率等精液性狀,基因型鑑定以聚合酶連鎖反應限制片段長度多態型分析(PCR-RFLP)進行。結果顯示,在熱緊迫一週後,HSP70基因276位點CG基因型之雞隻較GG基因型雞隻的精子濃度高(P<0.05),但GG基因型有最佳的精子形態(P<0.05)及較CG基因型高的精液量(P<0.05)。avUCP基因1316位點,在熱緊迫二週及三週後,EE基因型有較高的精子濃度。
試驗二則使用562隻XL品系(XL:♂L2R-×♀R-L2)及179隻XR品系(XR:♂R-L2×♀L2R-)雞隻作為試驗動物,記錄所有雞隻不同週齡體重、母雞之產蛋記錄及分析雞隻抗綿羊紅血球抗體力價。HSP70基因276位點之CC、CG、GG基因型頻率在XL公雞及XL母雞族群分別為46.0%、40.9%、13.1%及37.6%、48.7%、13.7%,在XR公雞及XR母雞分別為43.3%、46.7%、10.0%及32.6%、59.6%、7.9%;avUCP基因1316位點之EE、EF、FF基因型頻率在XL公雞及XL母雞族群分別為39.5%、50.9%、9.6%及44.3%、40.6%、15.1%,在XR公雞及XR母雞分別為71.1%、27.8%、1.1%及62.9%、37.1%、0%,無論在公雞或母雞族群,XL與XR在avUCP基因1316位點基因型頻率有顯著差異(P<0.0001);avUCP基因1270位點則幾乎沒有多態型。XR母雞族群中,HSP70-C276G基因GG基因型有較CG基因型高的8週齡體重(P<0.05),但在XL公母雞及XR公雞基因型則對0、4、8、12及16週齡體重沒有顯著影響;體增重方面,基因型則只影響XL公雞4到8週齡的增重。avUCP-T1316C基因型主要影響XL母雞之生長,其中FF基因型有較高的4、8、12週齡之體重及0到4及4到8週齡之體增重。HSP70及avUCP基因多態型則對雞隻初產日齡、初產到40週齡之產蛋率、40週齡之總產蛋數等產蛋性狀沒有顯著的影響,但HSP70基因型可能與產蛋習慣有關。HSP70-C276G基因型對綿羊紅血球抗體力價影響方面,XL公雞,CG雜合子有較高的第14天抗體力價,在XL母雞則是GG基因型的第7天抗體力價較高,XR母雞則發現GG基因型的第14天抗體力價最高(P<0.05);avUCP-T1316C基因在XL公雞,EF雜合子第14天抗體力價較高,在XL母雞EF雜合子之第14天抗體力價最低。
綜合本研究結果可知,雖然在32°C熱緊迫環境下一週後,HSP70-C276G基因之GG基因型有較佳的精子形態,avUCP-T1316C基因型在熱緊迫環境中對精子濃度也有所影響,但對於雞隻耐熱能力的影響需要進一步的驗證;不同基因型對生長、產蛋及免疫功能之效應受到品系、性別等因素影響,基因型效應分歧,因此,以這兩個基因SNP當作選種分子標記還需要更多證據來支持。

Heat stress causes major economical loss of poultry industry in tropical/subtropical area. Heat stress can result in high mortality, low growth performance, low egg production and reproduction disorders in roosters or hens. Heat-shock protein 70 (HSP70) is a molecular chaperone that can help cells to overcome heat stress. Avian uncoupling protein (avUCP) is known to play a role in regulating reactive oxygen species production in mitochondria. HSP70 and avUCP may be potential markers for thermotolerance in chickens. The purposes of this study were to investigate the effect of single nucleotide polymorphisms (SNPs) in HSP70 and avUCP on semen quality traits of roosters under chronic heat stress and on production related traits under normal environmental temperature.
Experiment 1 used 55 31-week-old F2 reciprocal crossbred chickens between Rhode Island Red selected for low residual feed consumption and L2 strain Taiwan country chicken. Roosters received four weeks of 32°C, 55% relative humidity chronic heat stress and the semen quality traits were evaluated weekly. The SNPs of HSP70 and avUCP were analyzed by PCR-RFLP. The result indicated that CG genotype in HSP70-C276G had higher sperm concentration than GG genotype after one week of heat stress (P<0.05). But GG genotype had the best sperm morphology after one week of heat treatment (P<0.05). After two and three week of heat stress, the EE genotype in avUCP-T1316C had higher sperm concentration.
In Experiment 2, 562 F2 of reciprocal crosses chicken XL strain and 179 XR strain were used (XL: ♂L2R-×♀R-L2;XR: ♂R-L2×♀L2R-). The body weight, egg production and antibody response to sheep red blood cell (SRBC) were collected. The genotypic frequencies of CC, CG, and GG genotypes at HSP70-C276G gene were 46.0%, 40.9%, and 13.1% in XL male, 37.6%, 48.7%, and 13.7% in XL female, 43.3%, 46.7%, and 10.0% in XR male, and 32.6%, 59.6%, and 7.9% in XR female. The genotypic frequencies of EE, EF, and FF genotypes at avUCP-T1316C gene were 39.5%, 50.9%, and 9.6% in XL male, 44.3%, 40.6%, and 15.1% in XL female , 71.1%, 27.8%, and 1.1% in XR male, 62.9%, 37.1%, and 0% in XR female. There were significant difference in avUCP-T1316C genotypic frequencies among XR and XL. Mutation site at 1270 C > T in avUCP gene did not show polymorphism in this study. In XR female, GG genotype of HSP70-C276G had higher 8 wk body weight than CG genotype. There were no significant genotypic effects on XL male, XR male and XR female. In XL strain male, the CG genotype had better performance than GG genotype in body weight gain between 4 to 8 wk (P<0.05). For avUCP-T1316C, the genotype effects mainly affect XL female population. FF genotype had higher 4, 8 and 12 wk body weight and higher body weight gain between 0 to 4 and between 4 to 8 wk in XL strain female. There was no significant effect of SNP in HSP70-C276G and avUCP-T1316C on egg production trait. However, HSP70-C276G polymorphism might affect the laying habits in XL. In immune response to SRBC, the CG genotype had higher antibody response to SRBC at day 14 than CC genotype in XL male (P<0.05). In females of XR and XL strain, the GG genotype showed better antibody response to SRBC at day 14 and day 7 respectively (P<0.05). The EF genotype of avUCP had higher antibody response to SRBC at day 14 in XL male. But in XL female, EF had lower antibody response to SRBC at day 14.
In summary, the results of this study indicated that the GG genotype in HSP70-C276G had better sperm morphology and avUCP-T1316C seem to have an effect on sperm concentration during chronic heat stress. But the potential effect of these SNPs on thermotolerance requires further studies. For growth performance, egg production, and immuno function, the effects of genotypes differed among strain and between gender. Therefore, practical application of SNP in these two genes as selection markers needs further evidences.
URI: http://hdl.handle.net/11455/25599
其他識別: U0005-0808201311103100
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-7100037012-1.pdf2.51 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.