Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25600
標題: Gordonia sp. CC-NAPH129-6萘分解基因型之探討
The study of naphthalene catabolic genotype of Gordonia sp. CC-NAPH129-6
作者: 林俊良
Lin, Chun-Liang
關鍵字: 多苯環芳香族碳氫化合物;Polycyclic aromatic hydrocarbons;戈登氏菌;萘生物復育;基因水平轉移;Gordonia;naphthalene;bioremediation;horizontal gene transfer
出版社: 土壤環境科學系所
引用: 王琳麒、李文智、林素貞。1995。垃圾焚化爐底灰、旋風集塵器、濕式洗滌塔及煙道廢氣排放多環芳香烴化合物之研究. 第十廢棄物處理技術研討會論文集。第400-406頁。 陳瑞仁、簡維政、廖世瑚、吳宗霖。1996。汽車排氣中PAHs及其排放微粒中碳成份之探討。第十三屆空氣污染控制技術研討會論文專輯。第333-341頁。 林俊良。2006。Gordonia terrae CC-NAPH129-6菌株對萘分解特研究及定量偵測方之建立。國立中興大學生命科學研究所碩士論文。 Alan, S. 2004. Environmental Biotechnology. Second Edition. Oxford university Press., New York. p187-188. Allen C.C.R., D.R. Boyd, M.J. Larkin, K.A. Reid, N.D. Sharma, and K. Wilson. 1997. Metabolism of naphthalene, 1-napthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038. Appl. Environ. Microbiol. 63: 151-155. Aminov, R.I. 2011. Horizontal gene exchange in environmental microbita. Front. Microbiol. 2:158. Arenskötter M., D. Bröker, and A. Steinbüchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70:3195-3204. Bendinger, B., F.A. Rainey, R.M. Kroppenstedt, M. Moormann, and S. Klatte. 1995. Gordonia hydrophobica sp. nov., isolated from biofilters for waste gas treatment. Int. J. Syst. Bacteriol. 45:544-548. Berekaa, M.M., A. Lions, R. Reichelt, U. Keller, and A. Steinbüchel. 2000. Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria. FEMS Microbiol. Lett. 184:199-206. Bjorseth, A., and T. Ramahl. 1983. Sources and Emission of PAH, Handbook of polycyclic Aromatic Hydrocarbons, Vol 1. Marcel Dekker, Inc. New York and Basel. Bonazountas M. 1991. Fate of hydrocarbons in soils: review of modeling practices. In: Kostecki PT, Calabrese EJ, Bell CE, eds. Hydrocarbon contaminated soils and groundwater; Vol. I: Analysis, fate, environmental and public health effect remediation. Chelsea, MI: Lewis Publishers, 167-185. Bosch, R., E.R. Moore, E. Garcia-Valdès, and D.H. Pieper. 1999. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J. Bacteriol. 181: 2315-2322. Bosch, R., E. Garcia-Valdès, E.R.B. Moore. 1999. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene. 236:149-157. Bosch, R., E. Garcia-Valdès, E.R.B. Moore. 2000. Complete nucleotide sequence and evolutionary significance of a a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene. 245:65-74. Brandão, P.F., L.A. Maldonado, A.C. Ward, A.T. Bull, and M. Goodfellow. 2001. Gordonia namibiensis sp. nov., a novel nitrile metabolising actinomycete recovered from an African sand. Syst. Appl. Microbiol. 24:510-515. Chang, J.H., Y.J. Kim, B.H. Lee, K.-S. Cho, H.W. Ryu, Y.K. Chang, and H.N. Chang. 2001. Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils. Biotechnol. Prog. 17:876-880. Chatterjee, S., and T.K. Dutta. 2003. Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC4818. Biochem. Biophys. Res. Commun. 309:36-43. Chaillan, F., A.L. Flèche, E. Bury, Y.-H. Phantavong, P. Grimont, A. Saliot, and J. Oudot. 2004. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res. Microbiol. 155:587-595. Choi, O.K., K.S. Cho, H.W. Ryu, and Y.K. Chang. 2003. Enhancement of phase separation by the addition of de-emulsifiers to three-phase (diesel oil/biocatalyst/aqueous phase) emulsion in diesel biodesulfurization. Biotechnol. Lett. 25:73-77. Crameri, R., J. Davies, and R. Hutter. 1986. Plasmid Curing and Generation of Mutations Induced with Ethidium Bromide in Streptomycetes. J. Gen.. Microbiol. 132:819-824. Di Gennaro, P., P. Terreni, G. Masi, S. Botti, F. De Ferra, and G. Bestetti. G. 2010. Identification and characterization of genes involved in naphthalene degradation in Rhodococcus opacus R7. Appl. Microbiol. Biotechnol. 87:297-308. Drzyzga, O., L. Ferna´ndez de las Heras, V. Morales, J. M. Navarro Llorens, and J. Perera. 2011. Cholesterol Degradation by Gordonia cholesterolivorans. Appl. Environ. Microbiol. 77:4802-4810. Edward, U., T. Rogall, H. Blocker, M. Emde, and E.C. Bottger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853. Fujii, T., T. Narikawa, K. Takeda, and J. Kato. 2004. Biotransformation of various alkanes using the Escherichia coli expression an alkane hydroxylase system from Gordonia sp. TF6. Biosci. Biotechnol. Biochem. 68:2171-2177. Funke, G., F.N.R. Renaud, J. Freney, and P. Riegel. 1997. Multicenter evaluation of the updated and extended API (RAPID) Coryne database 2.0. J. Clin. Microbiol. 35:3122-3126. Gilbert, S.C., J. Morton, S. Buchanan, C. Oldfield, and A. McRoberts. 1998. Isolation of a unique benothiophene-desulphurizing bacterium, Gordonia sp. strain 213E (NCIMB40816), and characterization of the desulphurization pathway. Microbiol. 144:2545-2553. Gogarten, J.P., and J.P. Townsend. 2005. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3:679-682. Goodfellow, M., and G. Alderson. 1977. The actinomycete-genus Rhodococcus: a home for the "rhodochrous" complex. J. Gen. Microbiol. 100:99-122. Gonzalez, F. J., and H. V. Gelboin. 1994. Role of human cytochrome P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab. Rev. 26: 165-183. Goyal, A.K., and G.J. Zylstra. 1996. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol. 62: 230-236. Grimmer, G., 1983. Enviromental carcinogeus : Polycyclic Aromatic Hydrocarbons. CRC Press, Boca Raton. Ground, E., B. Denecke, and R. Eichenlaub. 1992. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol. 58: 1874-1877. Guengerich, F. P. 1991. Oxidation of toxic and carcinogenic chemicals by human cytochrome P450 enzymes. Chem. Res. Toxicol. 4: 391-407. Haynes, B.S. 1991. Soot and hydrocarbons in combustion. In: W. Bartock and A.F. Sarofim (Eds), Fossil Fuel Combustion: A Source Book, pp. 261–326. Wiley, New York. Harvey, R. G. 1991. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity. Cambridge University Press, Cambridge. Hernandez-Perez, G., F. Fayolle, and J.-P. Vandecasteele. 2001. Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae. Appl. Microbiol. Biotechnol. 55:117-121. Hedlund, B.P., and J.T. Staley. 2006. Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ. Microbiol. 1:178-182. Hu, F.C., X.Y. Li, Z.C. Su, X.J. Wang, H.W. Zhang, and J.D. Sun. 2011. Identification and degradation capability of three pyrene-degrading Gordonia sp. strains. Ying Yong Sheng Tai Xue Bao. 22:1857-62. Jacques, R.J.S, B.C. Okeke, F.M. Bento, M.C.R. Peralba, and F.A.O. Camargo. 2007. Characterization of a polycyclic aromatic hydrocarbon-degrading microbial consortium from a petrochemical sludge landfarming site. Biorem. J. 11:1–11. Jung, C.M., F.H.Crocker, J.O.Eberly, and K.J. Indest. 2011. Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J. Appl. Microbiol. 110: 1449-1459. Jones, R.M., B. Britt-Compton, and P.A. Williams. 2003. The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. J. Bacteriol. 185: 5847-53. Kanazawa, H., T. Kiyasu, T. Noumi, M. Futai, and K. Yamaguchi. 1984. Insertions of transposable elements in the promoter proximal region of the gene cluster for Escherichia coli H+-ATPase: 8 base pair repeat generated by insertion of IS1. Mol. Gen. Genet. 194:179-187. Kim, S.B., R. Brown, C. Oldfield, S.C. Gilbert, and M. Goodfellow. 1999. Gordonia desulfuricans sp. nov., a benzothiophene-desulphurizing actinomycete. Int. J. Syst. Bacteriol. 49:1845-1851. Kim, S.B., R. Brown, C. Oldfield, S.C. Gilbert, S. Iliarionov, and M. Goodfellow. 2000. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int. J. Syst. Evol. Microbiol. 50:2031-2036. Kim, K.K., C.S. Lee, R.M. Kroppenstedt, E. Stackebrandt, and S.T. Lee. 2003. Gordonia sihwensis sp. nov., a novel nitrate-reducing bacterium isolated from a wastewater-treatment bioreactor. Int. J. Syst. Evol. Microbiol. 53:1427-1433. Kim, K.K., K.C. Lee, H.-P. Klenk, H.-M. Oh, and J.-S. Lee. 2009. Gordonia kroppenstedtii sp. nov., a phenoldegrading actinomycete isolated from a polluted stream. Int. J. Syst. Evol. Microbiol. 59:1992-1996. Kiyohara, H., K. Nagao, K. Kouno, and K. Yano. 1982. Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl. Environ. Microbiol. 43: 458-461. Klatte, S., R.F.A. Rainey, and R.M. Kroppenstedt. 1994. Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. Nov. and Gordona amarae comb. nov. Int. J. Syst. Bacteriol. 44:769-773. Koma, D., Y. Sakashita, K. Kubota, Y. Fujii, F. Hasumi, S.-Y. Chung, and M. Kubo. 2003. Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci. Biotechnol. Biochem. 67:1590-1593. Kotani, T., T. Yamamoto, H. Yurimoto, Y. Sakai, and N. Kato. 2003. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J. Bacteriol. 185:7120-7128. Kummer, C., P. Schumann, and E. Stackebrandt. 1999. Gordonia alkanivorans sp. Nov., isolated from tar-contaminated soil. Int. J. Syst. Bcteriol. 49:1513-1522. Kulakov, L.A., G.J. Poelarnds, D.B. Janssen, and M.J. Larkin. 1999. Characterization of IS2112, a new insertion sequence from Rhodococcus, and its relationship with mobile elements belonging to IS110 family. Microbiology. 145:561-568. Kulakov, L.A., S. Chen, C.R.A. Christopher, and J.L. Michael. 2005. Web-Type evolution of Rhodococcus gene cluster associated with utilization of naphthalene. Appl. Environ. Microbiol. 71: 1754-1764. Larkin, M.J., and M. J. Day. 1986. The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCIB12042 and 12043) and Rhodococcus sp. (NCIB12038) from garden soil. J. Appl. Bacteriol. 60: 233-242. Labarca, C., and K. Paigen. 1980. A simple, rapid, and sensitive DNA assay procedure Anal. Biochem. 102: 344-352. Larkin, M.J., C.C.R. Allen, L.A. Kulakov, and D.A. Lipscomb. 1999. Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J. Bacteriol. 181: 6200-6204. Linos, A., A. Steinbüchel, C. Spröer, and R.M. Kroppenstedt. 1999. Gordonia polyisoprenivorans sp. nov., a rubber-degrading isolated from an automobile tyre. Int. J. Syst.Bacteriol. 49:1785-1791. Linos, A., M.M. Berekaa, R. Reichelt, U. Keller, J. Schmitt, H.-C. Flemming, and R.M. Kroppenstedt. 2000. Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. Appl. Environ. Microbiol. 66:1639-1645. Linos, A., M.M. Berekaa, A. Steinbüchel, K.K. Kim, C. Spröer, and R.M. Kroppenstedt. 2002. Gordonia westfalica sp. nov., a rubber-degrading actinomycete. Int. J. Syst. Evol. Microbiol. 52:1133-1139. Liu, Y., F. Ge, G. Chen, W. Li, P. Ma, G. Zhang, and L. Zeng. 2011. Gordonia neofelifaecis sp. nov., a cholesterol side-chain-cleaving actinomycete isolated from the faeces of Neofelis nebulosa. Int. J. Syst. Evol. Microbiol. 61:165-169. Liu, T.T., Y. Xu, H. Liu, S. Luo, Y.J. Yin, S.J. Liu, and N.Y. Zhou. 2011. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB12038. App. Microbiol. Biotechnol. 90:671-678. Mahro, B., G. Schaefer, and M. Kästner. 1997. Pathways of microbial degradation of Polycyclic aromatic Hydrocarbons in soil. In Hinchee/Lesson and Semprini/Ong(Eds), Bioremediation of Chlorinated and Polycyclic aromatic hydrocarbons compounds: 203-215. Marston, C. P., C. Pereira, J. Ferguson, K. Fischer, O. Hedstrom, W-M. Dashwood and W. Barid. 2001. Effect of a complex environmental mixture form coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Marx, R.B., and M.D. Aitken. 1999. Quantification of chemotaxis to naphthalene by Pseudomonas putida G7. Appl. Environ. Microbiol. 65: 2847-2852. Matui, T., T. Onaka, K. Maruhashi, and R. Kurane. 2001. Benzo[b]thiophene desulfurization by Gordonia rubropertinctus strain T08. Appl. Microbiol. Biotechnol. 57:212-215. Matsui, T., and K. Maruhashi. 2004. Isolation of carotenoid-deficient mutant from alkylated dibenzothiophene desulfurizing Nocardioform bacteria, Gordonia sp. Tm414. Curr. Microbiol. 48:130-134. Misaki S., Y. Morimoto, M. Ogata, T. Yagi, Y. Higuchi, and N. Yasuoka. 1999. Structure determination of rubredoxin from Desulfovibrio vulgaris Miyazaki F in two crystal forms. Acta Cryst Sect D. 55:408-13. Nishioka, T., M. Iwata, T. Imaoka, M. Mutoh, Y. Egashira, T. Nishiyama, T. Shin, and T. Fujii. 2006. A mono-2-ethylhexyl phthalate hydrolase from a Gordonia sp. that is able to dissimilate di-2-ethylhexyl phthalate. Appl. Environ. Microbiol.72: 2394–2399. Oros, D.R., and B.R.T. Simoneit. 2001. Identification and emission factors of molecular tracers in organic aerosols from biomass burning. Part 1. Temperate climate conifers. Applied Geochemistry 16: 1513-1544. Perters, M., A. Tomikas, and A. Nurk. 2004. Organization of horizontally transfer pheBA operon and its adjacent genes in the genomes of eight indigenous Pseudomonas strain. Plasmid. 52:230-236. Pries, F., A.J. Vandenwijngaard, and R. Bos. 1994. The role of spontaneous cap domain mutations in haloalkane dehalogenase specificity and evolution. J. Biol. Chem. 269: 17490-17494. Richnow, H.H., E. Annweiler, W. Michaelis, and R.U. Meckenstock. 2003. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam. Hydrol. 65:101-120. Rigali, S., A. Derouaux, F. Giannotta, and J. Dusart. 2002. Subdivision of the helix-turn-helix GntR family of bacterial regulator in the FadR, HutC, MocR, and YtrA subfamilies. J BiolChem. 227:12507-12525. Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular cloning. Alaboratory manual. Cold Spring Harbor Laboratory press, Cold Spring Harbor, NY. Shen, F.T., H.L. Lu, J.L. Lin, W.S. Huang, A.B. Arun, and C.C. Young. 2006. Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene. Res Microbiol. 157: 367-375. Sharp, P. A., and B. Sugden. 1973. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis." Biochemistry 12: 3055-3063. Simon, M.J., T.D. Osslund, R. Saunders, B.D. Ensley, S. Suggs, A. Harcourt, W.C. Suen, D.L. Gibson, and G.J. Zylstra. 1993. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene. 127: 31-37. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separate by gel electrophoresis. J. Mol. Biol. 98: 503-517. Springael, D., A. Ryngaert, C. Merlin, A. Toussaint, and M. Mergeay. 2001. Occurrence of Tn4371 related sequences in (chloro-)bi-phenyl degrading bacteria. Appl. Environ. Microbiol. 67:42-50. Springael, D., and E.M. Top. 2004. Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends. Microbiol. 12: 53-56. Stackebrand, E., and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849. Stackebrand, E., F.A. Rainey, and N.L. Ward-Rainey. 1997. Proposal for a new hierarchic classification system, Acinobacteria classis nov. Int. J. Syst. Bacteriol. 47:479-491. Stackebrandt, E., W. Frederiksen, G.M. Garrity, P.A.D. Grimont, P. Kämpfer, M.C.J. Maiden, X. Nesme, R. Rossello-Mora, J. Swings, H.G. Truper, L. Vauterin, A.C. Ward, and W.B. Whitman. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol..52: 1043-1047. Sørensen S.J, M, Bailey, L.H. Hansen, N. Kroer, and S. Wuertz. 2005. Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3:700–710. Tenzen, T., S. Matsutani, and E. Ohtsubo. 1990. Site-specific transposition of insertion sequence IS630. J. Bacteriol. 172:3830-6. Top, E.M., and D. Springael. 2003. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr. Opin Biotechnol. 14:262-269. Tavares, Jr. Moacir., P. Pinto Juandir., L. Souza Alexandre., S. Scarminio Ieda, and S. M. Cristina. 2004. Emission of polycyclic aromatic hydrocarbons from diesel engine in a bus station, Londrina, Brazil. Atmospheric Environment. 38:5039-5044. Tsukamura, M. 1971. Proposal of a new genus, Gordona, for slightly acid fast organisms occurring in sputa of patients with pulmonary disease and in soil. J. Gen. Microbiol. 68:15-26. Usha, V. 1989. Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC press. Boca Raton, Florida. Van der Meer, J.R. 2002. Evolution of novel metabolic pathways for the degradation of environmental pollutants. In: Bitton G (Ed). Encyclopedia of environmental microbiology. New York, NY: John Wiley& Sons. Van der Meer, J.R. 2006. Environmental pollution promotes selection of microbial degradation pathways. Front. Ecol. Environ. 4:35-42. Xue, Y., X. Sun, P. Zhou, R. Liu, F. Liang, and Y. Ma. 2003. Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int. J. Syst. Evol. Microbiol. 53:1643-1646. Yoon, J. H., J.J. Lee, S.S. Kang, M. Takeuchi, Y.K. Shin, S.T. Lee, K.H. Kang, and Y.H. Park. 2000. Gordonia nitida sp. nov., a bacterium that degrades 3-ethylpyridine and 3-methylpyridine. Int. J. Syst. Evol. Microbiol. 50:1203-1210.
摘要: 
多苯環芳香族碳氫化合物 (polycyclic aromatic hydrocarbons, PAHs) 具有致癌性與致突變性,所以對人體的健康造成重大的威脅,因此針對受PAHs污染的環境進行整治復育已成為現階段最重要的工作。透過生物復育的方法利用微生物降解污染物已是現在環境保育上非常重要的策略之一。由於Gordonia菌屬具有分解許多環境污染物的能力,極具生物復育應用的潛力,所以篩選具有分解PAHs能力的Gordonia菌株為重要的課題。所以本研究以萘為PAHs化合物的標的,探討台灣本土Gordonia菌屬之萘分解相關基因在生態上的意義、分佈與傳播。本研究共分析47株Gordonia菌株 (包括標準菌株與台灣本土分離菌株) 之萘分解能力,僅Gordonia sp. CC-NAPH129-6具有萘分解能力。與Gordonia菌屬放線菌親緣關係接近的Rhodococcus菌屬中許多菌種具有萘的分解能力,並且其分解基因有很高的同源性,然而Gordonia菌屬中關於萘的分解基因的研究仍顯不足,所以本研究首度針對Rhodococcus萘分解相關基因序列進行比對分析,進而設計PCR引子選殖萘分解基因。結果顯示共分析9434 bp基因片段,其包含4個結構基因 (narAa、narAb、narB與narC),2個調控基因 (narR1與narR2)、rub1、orf7與tn等基因。探討CC-NAPH129-6之萘分解基因序列與組成,發現其序列相似度與Rhodococcs菌屬之nar region的萘分解基因高達90 %以上,且基因的排列組成也相同 (類似操作組型態的基因叢)。另外值得注的是在narC的下游具有1個IS630-like的轉位酶基因 (tn),其序列兩端均具有12 bp顛倒重複序列 (inverted repeats) 並且被直接重複序列 (direct repeats) 所包圍,類似於轉位子 (transposable element) 中的插入序列 (insertion sequence, IS element)。從質體去卻實驗中發現Gordonia sp. CC-NAPH129-6萘分解基因可能是座落在可移動的質體上,並且由脈衝式電泳實驗與南方墨點雜合結果得知Gordonia sp. CC-NAPH129-6具有二個質體,小的質體為97 kb,大的質體為介於145.5及194 kb之間,且萘分解基因座落在97 kb的質體上。分析比對Gordonia sp. CC-NAPH129-6與Rhodococcus菌屬之萘分解基因、16S rRNA基因與gyrB基因之相似度,發現本土萘分解菌Gordonia sp. CC-NAPH129-6之萘分解基因推測可能是從Rhodococcus 菌屬藉由基因水平轉移而來的。本篇研究為首度分析Gordonia菌屬之萘分解基因,並且提供放線菌中Gordonia菌屬在生物復育中的重要性。

Polycyclic aromatic hydrocarbons (PAHs), widely distributed environmental toxics, are potential carcinogenic and mutagenic chemicals to human health. Since PAHs tend to accumulate at soil, bioremediation through soil microorganisms is of choice. The genus Gordonia which belongs to mycolic acid containing actinomycetes has been well recognized to utilize a variety of aliphatic or aromatic pollutants. The studies of their genetic background of the catabolic genes may be useful in the development of suitable approaches for in situ bioremediation. In this study, we screened 47 Gordonia isolates and identified one isolate (CC-NAPH129-6) that can degrade naphthalene; furthermore, we identified the related catabolic genes that are present in this unique strain. We used newly designed primers that were based on primers that were originally designed for the conserved regions of Rhodococcus PAHs degrading genes to PCR amplify the CC-NAPH129-6 genome and identify a naphthalene operon-like gene cluster. In nar region four structural genes (narAa, narAb, narB, narC), two regulatory genes (narR1, narR2), a rubredoxin encoding gene (rub1) and a gene (orf7) with unknown function were obtained. When compared with most of the members within naphthalene-degrading Rhodococcus, these naphthalene catabolic genes in strain CC-NAPH129-6 were organized into an operon-like gene cluster and present in the same order. This naphthalene gene cluster located in a 97-kb small plasmid of strain CC-NAPH129-6, as can be seen from the PFGE and Southern blot hybridization data. Besides, a partial transposase sequence containing an IS element structure with 12-nt inverted repeat at both ends was found, which was flanked by direct repeats downstream the narC gene in strain CC-NAPH129-6. This novel transposase gene sequence which was similar to IS630 family transposase in Rhodococcus jostii RHA pRHL2 plasmid was unlike to the transposase sequence found between narR2 and rub1 genes in R. opacus R7. The comparative analyses of the naphthalene catabolic genes, 16S rRNA and gyrB gene present in strain CC-NAPH129-6 and naphthalene-degrading Rhodococcus species imply that the naphthalene catabolic genes in strain CC-NAPH129-6 might be horizontally transferred from Rhodococcus members. This is the first report demonstrating that naphthalene catabolic genes organized into an operon-like gene cluster in the genus Gordonia, and this might provide evidence of the importance of this actinobacterial lineage in the bioremediation of oil-contaminated soils.
URI: http://hdl.handle.net/11455/25600
其他識別: U0005-2108201209270100
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.