Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25604
標題: 不同施肥下玉米根內生菌群落變化之研究
Endophytic bacterial communities of maize under different fertilization
作者: 王巧貞
Wang, Qiao-Zhen
關鍵字: 玉米;endophytic bacterial;內生菌;固氮活性;碳源利用;群落結構;maize;PCR-DGGE;Biolog
出版社: 土壤環境科學系所
引用: 朱宏怡。2010。長期施用不同肥料下水稻根圈土壤固氮基因多樣性。國立中興大學博士論文。 吳正宗。2005。認識化學肥料。臺南區農業改良場技術專刊。132:24-62。 宋宛霖。2007。不同施肥策略下有機和慣行農耕法對土壤品質之研究。中興大學碩士論文。 李世清、任書傑、李生秀。2004。土壤微生物體氮的季節性變化及其與土壤水分和溫度的關係。植物營養與肥料學報。10:18-23。 李娟、趙秉強、李秀英、姜瑞波、S.H. Bing。2008。長期不同施肥制度下幾種土壤微生物學特徵變化。植物生態學報。32:891-899。 陳仁炫、吳正宗、陳鴻基、黃裕銘、鄒裕民、鍾仁賜。 2008。土壤化學性質分析手冊。中華土壤肥料學會。 陳存澤。2008。不同的施肥管理對土壤化學性質、酵素活性及微生物族群結構的影響。台灣大學碩博士論文。 黃文欣。2008。長期施用有機及化學肥料在水稻-玉米輪作系統下對土壤品質之影響。國立中興大學碩士論文。 農業委員會。1997。作物施肥手冊。 蔡宜峰、黃勝忠、賴文龍。1989。綠肥對春作高粱生長影響之研究。臺中區農業改良場研究彙報。23:11-20。 蔡蕙芳。2001。肥料中有機質含量分析方法之評估研究。國立中興大學碩士論文。 楊維哲。2007。利用產氣細菌防治萵苣猝倒病。國立中興大學碩士論文。 Adejumo, T. O., and O. O. Orole. 2010. Effect of pH and moisture content on endophytic colonization of maize roots. Scientific Research and Essays 5: 1655-1661. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169. Bais, H. P., T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57: 233-266. Bi, J. L., N. C. Toscano, and M. A. Madore. 2003. Effect of urea fertilizer application on soluble protein and free amino acid content of cotton petioles in relation to silverleaf whitefly (Bemisia argentifolii) populations. J. Chem. Ecol. 29: 747-761. Boddey, R. M., J. Dobereiner. 1988. Nitrogen fixation associated with grasses and cereals: recent results and perspectives for future research. Plant Soil 108: 53-65. Bolton Jr, H., L. F. Elliott, R. I. Papendick, D. F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biol. Biochem. 17: 297-302 Bronick, C. J., and R. Lal. 2005. Soil structure and management: a review. Geoderma 124: 3-22. Bulluck, L. R. III., M. Brosius, G. K. Evanylo, and J. B. Ristaino. 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 19: 147-160. Canaday, C. 1992. Effects of nitrogen-fertilization on bacterial soft rot in two broccoli cultivars, one resistant and one susceptible to the disease. Plant Dis. 76: 989-991. Dobereiner, J.1988. Isolation and identification of root associated diazotrophs. Plant Soil 110, 207-212. Ellis, R. J., P. Morgan, A. J. Weightman, and J. C. Fry. 2003. Cultivation- dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69:3223-3230. Feng, Y., D. Shen, and W. Song. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J. Appl. Microbiol. 100: 938-945. Franzluebbers, A. J. 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 66: 95-106. Garland, J. L., A. L. Mills. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57: 2351-2359. Hardoim, P. R., F. D. Andreote, B. Reinhold-Hurek, A. Sessitsch, L. S. van Overbeek, J. D. van Elsas. 2011. Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol. Ecol. 77: 154-164. Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. M. H. Wellington, 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241. Houot, S. and R. Chaussod. 1995. Impact of agricultural practices on the size and activity of the microbial biomass in a long-term field experiment. Biol. Fertil. Soils 19:309-316. Jha, P. N. and A. Kumar. 2007. Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J. Appl. Microbiol. 103: 1311-1320. JI, B., F. Olivares, A. Hemerly, F. R. Jr, A. Oliveira, V. Baldani, et al. 1998. Nitrogen-fixing endophytes: recent advances in the association with graminaceous plants grown in the tropics. Biological Nitrogen Fixation for the 21st century 31: 203. Knauth, S., T. Hurek, D. Brar, and B. Reinhold-Hurek. 2005. Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ. Microbiol. 7: 1725-1733. Kowalenko, C. G., K. C. Ivarson, and D. R. Cameron. 1978. Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol. Biochem. 10: 417-423. Kozdroj, J., J. D. van Elsas. 2001. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J. Microbiol. Methods 43: 197-212. Kuklinsky-Sobral, J., W. Araujo, R. Mendes, A. Pizzirani-Kleiner, J. Azevedo. 2005. Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273: 91-99. Lin, C. L., F. T. Shen, C. C. Tan, C. C. Huang, B. Y. Chen, and A. B. Arun. 2012. Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation. Microbiol. Res. 167: 395- 404. Madejon, E., P. Burgos, R. Lopez, and F. Cabrera. 2001. Soil enzymatic response to addition of heavy metals with organic residues. Biol. Fertil. Soils 34: 144-150. Maeder, P., A. Fliebbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming, Science 296:1694-1697. Marschner, P., E. Kandeler, and B. Marschner. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35: 453-461. McAuliffe, L., R. J. Ellis, J. R. Lawes, R. D. Ayling, and R. A. J. Nicholas. 2005. 16S rDNA PCR and denaturing gradient gel electrophoresis : a single generic test for detecting and differentiating Mycoplasma species. J. Med. Microbiol. 54: 731-739. McInroy, J., J. Kloepper. 1995. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173: 337-342. Monta˜nez, A., A. R. Blanco, C. Barlocco, M. Beracochea and M. Sicardi. 2012. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl. Soil Ecol. 58: 21-28. Naira, A. and M. Ngouajio. 2012. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol. 58: 45-55. Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, and G. Renella, 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54: 655-670. Ovreas, L., L. Forney, F. L. Daae, and V. Torsvik. 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63:3367-3373. Patriquin, D. G. 1978. Factors affecting nitrogenase activity (acetylene- reducing activity) associated with excised roots of the emergent halophyte Spartina alterniflora Loisel. Aquat. Bot. 4: 193-210. Poly, F., L. Ranjard, S. Nazaret, F. Gourbiere, and L. J. Monrozier. 2001. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl. Environ. Microbiol. 67: 2255-2262. Prakamhang, J., K. Minamisawa, K. Teamtaisong, N. Boonkerd, and N. Teaumroonga. 2009. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl. Soil Ecol. 42: 141-149. Prosperi, C., L. Boluda, C. Luna, E. Fernandez-Valiente. 1992. Environmental factors affectingin vitro nitrogenase activity of cyanobacteria isolated from rice-fields. J. Appl. Phycol. 4: 197-204. Ramesh, R., A. A. Joshi, and M. P. Ghanekar. 2009. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J. Microbiol. Biotechnol. 25: 47-55. Reeves, D. W. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 43: 131-167. Roesch, L. F. W., F. L. Olivares, L. M. P. Passaglia, P. A. Selbach, E. L. S. de Sa, and F. A. O. de Camargo. 2006. Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen- supply. World J. Microbiol. Biotechnol. 22: 967-974. Salgado, S. C., M. C. Cepero, E. Realpe, and S. Restrepo. 2007. Histological analyses of the fungal endophytes in Rosa hybrida. Rev. Iberoam. Micol. 24: 323-324. Schmidt, M. A., E. M. Souza, V. Baura, R. Wassem, M. G. Yates, and F. O. Pedrosa. 2011. Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz. J. Med. Biol. Res. 44: 182-185. Seghers, D., L. Wittebolle, E. M. Top, W. Verstraete, and S. D. Siciliano. 2004. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol. 70: 1475-1482. Stackebrandt, E., and B. M. Goebel. 1994. Taxonomic note: A place for DNA- DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. Stock, W. D., and O. A. M. Lewis. 1986. Soil nitrogen and the role of fire as a mineralizing agent in a South african coastal Fynbos ecosystem. J. Ecol. 74: 317-328. Tarrand, J. J., N. R. Krieg, J. Dobereiner. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24: 967-980. Tian, X., L. Cao, H. Tan, W. Han, M. Chen, and Y. Liu. 2007. Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb. Ecol. 53: 700-707. Wagner, M., R. Amann, H. Lemmer, K. H. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525. Wagner, S. C. 2012. Biological nitrogen fixation. Nature Education Knowledge 3(10): 15. Wander, M. M., D.S. Hedrick, D. Kaufman, S. J. Traina, B. R. Stinner, and S. R. Kehrmeyer. 1995. The functional significance of the microbial biomass in organic and conventionally managed soils. Plant Soil 170: 87-97. Wani, S. P., P. J. Dart, M. N. Upadhyaya. 1983. Factors affecting nitrogenase activity (C2H2 reduction) associated with sorghum and millet estimated using the soil core assay. Can. J. Microbiol. 29:1063-1069. Xu M. and Qi Y. 2001. Soil-surface CO2 efflux and its spatial and temporal variation in a young ponderosa pine plantation in northern California. Glob. Change Biol. 7: 667-677. Yang, C. H., and D. E. Crowley. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66: 345-351. Yoshida, T. and R. R. Ancajas. 1970. Application of the acetylene reduction method in nitrogen fixation studies. Soil Sci. Plant Nutr. 16: 234-237. Zak, J. C., M. R. Willig, D. L. Moorhead, and H. G. Wildman. 1994. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 26: 1101-1108. Zakria, M., A. Ohsako,Y. Saeki, A. Yamamoto, and S. Akao, 2008. Colonization and growth promotion characteristics of Enterobacter sp. and Herbaspirillum sp. on Brassica oleracea. Soil Sci. Plant Nutr. 54:507-516. Zhang, J., S. Subramanian, G. Stacey, and O. Yu. 2009. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. The Plant Journal 57: 171-183.
摘要: 
農業管理及肥料施用影響土壤中微生物的群落結構及族群多樣性。植物內生菌主要是土壤中的微生物藉由植物根進入到植物體中形成,因此施用不同的肥料可能影響土壤微生物,進而影響植物內生菌的族群結構。本研究的目的為了解在不同的施肥管理下,玉米內生菌族群變化。同時利用一般細菌的16S rRNA gene和固氮菌的固氮基因 (nifH gene)測定物種的多樣性及測定碳源利用率 (Biolog) 和固氮活性 (乙炔還原法) 得知功能多樣性,比較不同施肥對兩者影響為何,並測定土壤微生物的碳源利用率,比較根內及根圈在不同施肥下對碳源利用差異。結果顯示,利用PCR-DGGE及Biolog測定受到化肥、堆肥及綠肥影響不同,在物種多樣性方面,PCR-DGGE測得的玉米根內菌多樣性,豬糞堆肥處理顯著高於化學肥料施用處理;然而在Biolog試驗中測得多樣性,施用化學肥料處理則高於豬糞堆肥處理。顯示利用16S rDNA及碳源利用的功能測得的多樣性有不同意義,但皆影響玉米根內生菌群落結構。土壤及根內微生物碳源利用結果不同,在多樣性計算結果,土壤測定以堆肥處理最高,化肥處理最低;玉米根測定則是以化肥處理最高,堆肥次之,顯示具有進入植物體中形成內生菌的微生物,選擇適合生存的環境,導致土壤及玉米根中測定結果不同。本試驗無法從PCR-DGGE中看出施肥對於玉米內生固氮菌族群的差異,但在固氮活性測定結果顯示與土壤中無機態氮含量有關。顯示在不同施肥處理下,影響固氮菌中固氮基因的表現。植物內生菌對於植物生長有益,如果可以在接種內生菌的過程配合肥料的使用,在未來可能可以當作將內生菌當作微生物肥料使用,對農業發展上更有幫助。

Agricultural management and fertilizer application are known to affect the soil microbial community structure and diversity. Endophytes gain entrance into plant parts mainly through the root system. In addition, fertilization may influence soil microbial community and structure of endophytic bacteria. The purpose of this study was to investigate the structure of the root endophytic community in maize under different fertilizer treatments. PCR-DGGE analysis using 16S rDNA primers was used to elucidate the structure of the endophytic bacterial communities and nifH primer demonstrated diazotrophic bacterial species diversity in maize root. Functional diversity was measured by the carbon source utilization (Biolog) and nitrogenase activity (acetylene reduction assay) under different fertilization treatments. Rhizospheric microbial carbon utilization was also measured and compared with endophytic community. The results showed that maize root endophytic community structure was affected by chemical fertilizers, compost and green manure revealed by PCR-DGGE and Biolog analyses. In PCR-DGGE, the bacterial diversity of the manure compost treatment was higher than that of the chemical fertilizer; however, in Biolog tests, the diversity of the chemical fertilizer treatment was higher compared to the manure compost, Showing that the bacterial diversity tested by 16S rRNA gene and carbon utilization methods had interesting meaning. The diversity tested by Biolog was difference between soil and root. In soil, the carbon utilization diversity of the chemical fertilizer treatment was the highest, however, the diversity of the chemical fertilizer was the highest in root. The diazotrophic bacterial community structure in maize root tested by PCR-DGGE under the different fertilizers was not significantly different. However, the nitrogenase activity in maize roots was related to inorganic nitrogen content in soil. Endophytic bacteria may be used as biofertilizers with chemical or organic fertilizer.
URI: http://hdl.handle.net/11455/25604
其他識別: U0005-2008201318215000
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.