Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25606
標題: 不同炭化溫度導致土壤組成的變化及其對Cr(VI)轉移的影響
Cr(VI) transformations as influenced by the soil components carbonized at different temperatures
作者: 陳楷岳
Chen, Kai-Yue
關鍵字: 炭化;carbonization;可溶性有機碳;六價鉻;吸附;還原;dissolved organic carbon;Cr(VI);adsorption;reduction
出版社: 土壤環境科學系所
引用: 王一雄 。 1997。土壤環境化學。明文書局。 郭鴻裕 。 民84年。增修訂再版台灣農家要覽 農作篇(一) 伍、土壤肥料 二、台灣地區主要土壤分佈及特性。豐年社。台北。457-460。 行政院環保署土壤及地下水整治網資料。2012。網址: http://sgw.epa.gov.tw/public/0401_Top.asp?Top=3。上網日期:2012-06-06。 沈盈嬛 。 2009。椰殼衍生之黑炭對Cr(VI)之吸附和還原轉化作用,碩士論文,國立中興大學,台中,台灣。 林怡君 。 2009。Neurospora crassa 真菌殘體對溶液中Cr(VI)的移除機制,碩士論文,國立中興大學,台中,台灣。 林郁綺 。 2010。探討纖維素、半纖維素、幾丁質以及木質素對溶液中Cr(VI)的反應機制,碩士論文,國立中興大學,台中,台灣。 張容蓉 。 2006。炭化稻桿及椰殼之結構鑑定與其對2-氯酚之吸附行為,碩士論文,國立中興大學,台中,台灣。 黃盈盈 。 2006。重複萃取腐植酸之結構特性及其對2﹐4﹐6-三氯酚吸附之影響,碩士論文,國立中興大學,台中,台灣。 黃詩文 。 2010。腐植酸之化學組成與分子大小對Cr(VI)還原之影響,碩士論文,國立中興大學,台中,台灣。 陳思穎 。 2009。光誘導不同分子大小及化學組成之腐植酸還原Cr(VI),碩士論文,國立中興大學,台中,台灣。 陳敬遠 。 2004 。水庫底泥與高山未擾動土壤腐植酸組成特性差異之意義及其吸持甲苯之反應,朝陽科技大學,台中,台灣。 許乃樺 。 2008。稻稈製成之黑碳對Cr(VI)之吸附和還原轉化作用,碩士論文,國立中興大學,台中,台灣。 Aiken, G.R., D. M. McKnight, R. L. Wershaw, and P. MacCarthy. 1985.Humic Substances in Soil, Sediment, and Water, John Wiley & Sons,New York, pp. 527-559. Allen, S.J. 1996. Types of adsorbent materials. In: McKay, G. (Ed.), Use of Adsorbents for the Removal of Pollutants from Wastewaters. CRC Press, Boca Raton, New York, London, Tokyo, pp. 59–97. Almendros, G., F. Martın, and F.J. Gonza’lez-Vila. 1988. Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain. Geoderma. 42. 115– 127. Almendros, G., F.J. Gonzalez-Vila, and F. Martin. 1990. Fire-induced transformation of soil organic matter from an oak forest: An experimental approach to the effects of fire on humic substances. Soil Sci. 149: 158–167. Almendros, G., H. Knicker, and J.F. Gonzalez-Vila. 2003. Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Org. Geochem. 34: 1559–1568. Almendros, G., M.E. Guadalix, F.J. Gonzalez-Vila, and F. Martin. 1996. Preservation of aliphatic macromolecules in soil humins. Org. Geochem. 24:651–659. Arancon, N.Q., C.A. Edwards, R. Atiyeh, and J.D. Metzger. 2004. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresour. Technol. 93: 139–144. Baes, A.U., and P.R. Bloom. 1989. Disffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Sci. Soc. Am. J. 53:695-700. Bartlett, R., and B. James. 1996. Chromium. in: D.L. Sparks et al. (Ed.), Methods of soil analysis. Part 3. Chemical methods; SSSA and ASA, Madison, WI, p.683-701. Bartlett, R.J., and J.M. Kimble.1976. Behavior of chromium in soils. II. Hexavalent forms. J. Environ. Qual. 5, 383–386. Benedetti, M.F., W.H.V. Riemsdijk, L.K. Koopal, D.G. Kinniburgh, D.C. Gooddy, and C.J. Milne. 1996. Metal ion binding by natural organic matter: From the model to the field. Geochim. Cosmochim. Acta 60: 2503-2513. Berlett, B.S., Levine, R.L., Stadtman, E.R., 2000. Use of isosbestic point wavelength shifts to estimate the fraction of a precursor that is converted to a given product. Anal. Biochem. 287: 329–333. Bracewell, J.M., G.W. Robertson, and D.I. Welch.1980. Polycarboxylic acids as the origin of some pyrolysis products characteristic of soil organic matter. J. Anal. Appl. Pyrolysis 2:239–248. Brigante, M., G. Zanini, M. Avena. 2009. Effect of pH, anions and cations on the dissolution kinetics of humic acid particles. Colloid Surf. A.. 347:180-186. Brindley, G.W., and G. Brown. 1980. Crystal structures of clay minerals and their x-ray identification. Mineralogical Society. Monogr. No. 5. London. Brooks, S.J., T. Bolama, L. Tolhursta, J. Bassetta, J. L. Rochea, M. Waldockb, J. Barrya, K. V. Thomasc. 2007. Dissolved organic carbon reduces the toxicity of copper to germlings of the macroalgae, Fucus vesiculosus. Ecotoxi. Environ. Safety. 70:88-98. Buckingham. S., E. Tipping, and J. Hamilton-Taylor. 2008. Concentrations and fluxes of dissolved organic carbon in UK topsoils. Sci. Total Environ. 407:460-470. Buffle, J., 1988. Complexation Reactions in Aquatic Systems. Ellis Horwood, Chichester. Buffle. J., J.J. Vuilleumier, M.L. Tercier, N. Parthasarathy. 1987. Voltammetric study of humic and fulvic substances V. Interpretation of metal ion complexation measured by anodic stripping voltammetric methods. Sci. Total Environ. 60:75-96. Campanella, L., and M. Tomassetti. 1990. Thermogravimetric and IR analysis of different extracts of humic substances. Thermochim. Acta. 170: 67–80. Campitelli, P.A., M. I. Velasco, and S. B. Ceppi. 2006. Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil. Talanta 69:1234-1239. Chen, C., X. Wang, H. Jiang, and W. Hu. 2007. Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids Surf. A:Physicochem. Eng. Asp. 2:121-125. Chen, S.Y., S.W. Huang, P.N. Chiang, J.C. Liu, W.H. Kuan, J.H. Huang, J.T. Hung,Y.M. Tzou, C.C. Chen, and M.K. Wang. 2011. Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction. J. Hazard. Mater. 197: 337-344. Chen, K.Y., J.C. Liu, P.N. Ching, S.L. Wang, W.H. Kuan, Y.M. Tzou, Y. Deng, K.J. Tseng, C.C. Chen, and M.K. Wang. 2012. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures. Enviro. Pollu. 162:151-158. Chen, Z.S., T.C. Tsou, V.B. Asio, and C.C. Tsai. 2001. Genesis of Inceptisols on a volcanic landscape in Taiwan. Soil Sci. 166:255-266. Chin, Y.P., G. Aiken, and E.O. Loughlin. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substance. Environ. Sci. Technol. 28:1853-1858. Choromanska, U., and T.H. DeLuca. 2001. Prescribed fire alters the impact of wildfire on soil biochemical properties in a ponderosa pine forest. Soil Sci. Soc. Am. J. 65 : 232–238. Chun, Y., G. Sheng, C.T. Chiou, and B. Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38:4649-4655. Coble, P.G., Green, S.A, Blough, N.V, Gagosian, and R.B, 1990. Characterization of dissolved organic carbon matter in the Black Sea by fluorescence spectroscopy. Nature 348: 432–435. Coble, P.G., C. A. Schultz, and M. Kenneth. 1993. Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques. Mar. Chem. 41:173-178. Cotton, F.A., and G. Wilkinson. 1980.Advanced inorganic chemistry. 4th ed. New York, Wiley. Denis, M.Z., P.S.K. Irina, and V. Perminova. 2004. Reduction of Cr(VI) by peat and coal humic substances. Environ. Chem. 2:141–145. DeBano, L.F., D.G. Neary, and P.F. Ffolliott. 1998. Fire’s effect on ecosystems. John Wiley & Sons, New York. Dixon, J.B. and S.B. Weed. 1989. Minerals in Soil Environments. (2nd ed.), Soil Science Society of America, Madison, WI 1244. Eaton, A.D., Clesceri, L.S., and A.E. Greenberg. 1965. Standard Methods for the Examination of Water and Wastewater., 19th ed.; American Public Health Association: Washington, DC. Eisler, R. 1986.Chromium hazards to fish, wildlife, and invertebrates: a synoptic review, Biological Report 85 1.6, Contaminated Hazard Reviews Report 6, US Department of the Interior, Fish and Wildlife Service, Laurel, MD. Fernandez, I., A. Cabaneiro and T. Carballas. 1997. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 29:1–11. Fernandez, I., A. Cabaneiro, T. Carballas. 2001. Thermal resistance to high temperatures of different organic fractions from soils under pine forests. Geoderma 104:281-298. Fernandez, I., A. Cabaneiro, and S.J. Gonzalez-Prieto. 2004. Use of 13C to monitor soil organic matter transformations caused by a simulated forest fire. Rapid Commun. Mass Spectrom 18:435–442. Fukushima, M., K. Yamamoto, K. Ootsuka, T. Komai, T. Aramaki, S. Ueda, and S. Horiya. 2009. Effects of the maturity of wood waste compost on the structural features of humic acids. Bioresource Techno. 100:791-797. Fisher, J.A. 1990. The Chromium Program. Harper and Row, New York. Gee, G.W., and J.W. Bauder. 1986. Particle size analysis. p. 404-408. In Klute et al., (ed.) Methods of soil analysis. Part I. 2nd edition Agronomy. ASA. Madison. WI. Giovannini, G., S. Benvenuti., S. Lucchesi., and M. Giachetti. 1993. Weed reduction by burning straw and stubble in the field: positive response and potential hazard. in: M.G. Paoletti, W. Foissner and D. Coleman (Eds.), Soil biota, nutrient cycling and farming systems; Lewis Publishers, Boca Raton, FL, p.279–285. Greene-Kelly, R. 1957. The montmorillonite minerals (smectites). in: R.C. Mackenzie (Ed.). The Differential Thermal Investigation of Clays; Mineralogical Society, London, p.140–164. Gonza’lez-Pe’rez, J., F.J. Gonza’lez-Vila., G. Almendros., and H. Knicker. 2004. The effect of fire on soil organic matter—a review. Environ. Int. 30:855-870. Gonzalez, M.H., G.C.L. Araujo, C.B. Pelizaro, E.A. Menezes, S.G. Lemos, G.B. de Sousa, and A.R.A. Nogueira. 2008. Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater, J. Hazard. Mater. 159: 252-256. Gu, B., J. Schmitt, Z. Chen, L. Liang, and J.F. McCarthy. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 28: 38-46. Gu, B., and Chen, J. 2003. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochim. Cosmochim. Acta 67: 3575-3582. Guerrero, C., J. Mataix-Solera, I. Gomez, F. Garcia-Orenes, and M.M. Jordan. 2005. Microbial recolonization and chemical changes in a soil heated at different temperatures. Int. J. Wildland Fire 14: 385–400. Hayes, M.H.B. 1985. Extraction of humic substances from soil., p. 329-361, In GR Aiken, ed. Humic substances in soil, sediment and water. Geochemistry, isolation and characterization. Wiley Intersci., New York. Hammes, K., R. J. Smernik, J. O. Skjemstad, and M.W.I. Schmidt. 2008. Characterisation and evaluation of reference materials for black carbonanalysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl. Geochem. 23:2113–2122. Hardy, A., K. Van Werde, G. Vanhoyland, M.K. Van Bael, J. Mullens, and L.C. Van Poucke. 2003. Study of the decomposition of an aqueous metal-chelate gel precursor for (Bi,La)(4)Ti3O12 by means of TGA-FTIR, TGA-MS and HT-DRIFT. Thermochimica Acta. 397: 143-153. Hatcher, P.G., D.L. Vanderhart, W.L. Earl. 1980. Use of solid state 13C NMR in structural studies of humic acids and huminfrom Holocene sediments. Org. Geochem 2:87–92. Haug, A., and O. Smidsrod.1970. Selectivity of some anionic polymers for divalent metal ions. Acta Chem. Scand 24: 843-854. Heidenreich, R.D., W.M. Hess, and L.L. Bau. 1968. A test object and criteria for high resolution electron microscopy. J. Appl. Crystallogr. 1:1–19. Higgins, T.E., A.R. Halloran, and J.C. Petura. 1997. Traditional and Innovative treatment methods for Cr(VI) in soil. J. Soil Contam. 6:767-797. Hsu, C.L., S.L. Wang, and Y.M. Tzou. 2007. Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III). Environ. Sci. Technol. 41: 7907-7914. Hsu, N.H., S.L. Wang, Y.C. Lin, G.D. Sheng, and J.F. Lee. 2009. Reduction of Cr(VI) by Crop-Residue-Derived Black Carbon. Environ. Sci. Technol. 43: 8801-8806. Hsu, L.C., S.L. Wang, Y.C. Lin, M.K. Wang, P.N. Chiang, J.C. Liu, W.H. Kuan, C.C. Chen, and Y.M. Tzou. 2010. Cr(VI) removal on fungal biomass of Neurospora crassa: the importance of dissolved organic carbons derived from the biomass to Cr(VI) reduction. Environ. Sci. Technol. 44: 6202-6208. Hu, J., S.W. Wang, D. Shao, Y.H. Dong, J.X. Li, and X.K. Wang. 2009.Adsorption and reduction of chromium(VI) from aqueous solution by multiwalled carbon nanotubes. The Open Environ. Pollut. Toxicol. J. 1: 66-73. Huang, Y.Y., S.L. Wang, J.C. Liu, Y.M. Tzou, J.H. Chen, and R.R. Chang. 2008. Influences of humic acids with different preparative methods on the sorption of 2,4,6-trichlorophenol. Chemosphere 70:1218-1227. Ibarra, J.V., and R. Juan. 1985. Structural changes in humic acids during the coalification process. Fuel 64: 650–656. Ibrahim, S.M., and T.B.Goh. 2004. Changes in macroaggregation and associated characteristics in mine tailings amended with humic substances. Commun. Soil Sci. Plant Anal. 35: 1905–1922. Jackson, M.L. 1979. Soil Chemical and Analysis-Advanced Course. (3rd Printing, 1967) Published by the author. Dept. of Soil Sci. Univ. of Wisconsin, Madison, WI. Jardine, P.M., Fendorf, S.E., Mayes, M.A., Larsen, I.L., Brooks, S.C., Bailey, W.B. 1999.Fate and transport of hexavalent chromium in undisturbed heterogeneous soil.Environ. Sci. Technol. 33: 2939–2944. Kang, S., D. Amarasirwardena, P. Veneman., and B. Xing. 2003. Characterization of ten sequentially extraed humic acids and a humin from a soil in western Massachusetts. Soil Sci. 168:880-887. Kang, S., and B. Xing. 2005. Phenanthrene sorption to sequentially extracted soil humic acids and humans. Environ. Sci. Technol. 39:134-140. Karayildirim, T., J. Yanik., M. Yuksel., and H. Bockhorn. 2006. Characterisation of products from pyrolysis of waste sludges. Fuel 85: 1498-1508. Khalil, L.B., W.E. Mourad, and M.W. Rophael. 1998. Photocatalytic reduction of environmental pollutant Cr(V1) over some semiconductors unter UV/visible light illumination. Appl. Catal. B: Environ. 17:267-273. Klute, A. 1986. Methods of soil analysis, Part1. Physical and mineralogical methods. 2nded. Publ. by Soil Sci. Soc. Am., Madison, WI. Knicker, H., F.J. Gonzalez-Vila, O. Polvillo, J.A. Gonzalez, and G. Almendros. 2005. Fire-induced transformation of C- and N-forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol. Biochem. 37:701–718. Knicker, H., P. Muffler., and A. Hilscher. 2007. How useful is chemical oxidation with dichromate for the determination of "Black Carbon" in fire-affected soils? Geoderma 142: 178-196. Kotas, J., and Z.Stasicka. 2000. Chromium occurrence in the environment and methods of its speciation. Environ. Sci. Technol. 26:307-312. Kuhlbusch, T.A.J., and P.J. Crutzen. 1995.Toward a global estimate of Black Carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Globle. Biogeochem. Cycles. 9:491–501. Kuhlbusch, T.A.J. 1995. Method for determining black carbon in residues of vegetation fires. Environ. Sci. Technol. 29:2695–2702. Kuhlbusch, T.A.J. 1998. Black carbon in soils, sediments, and ice cores. In Encyclopedia of Environmental Analysis and Remediation (ed. R.A. Meyers), Wiley, New York, p. 813–823. Leita, L., A. Margon, A. Pastrello, I. Arcon, M. Contin, and D. Mosetti, 2009. Soil humic acids may favour the persistence of hexavalent chromium in soil. Environ. Pollut. 157:1862-1866. Lin, Y.C., S.L. Wang, W.C. Shen, P.M. Huang, P.N. Chiang, J.C. Liu, C.C. Chen, and Y.M. Tzou. 2009. Photo-enhancement of Cr(VI) reduction by fungal biomass of Neurospora crassa. Appl. Catal. B-Environ. 92. 294-300. Lu, X.Q., A.M. Vassallo, and W.D. Johnson.1997. Thermal stability of humic substances and their metal forms: an investigation using FTIR emission spectroscopy. J. Anal. Appl. Pyrolysis 43:103–113. Lu, X.Q., J.V. Hanna, and W.D. Johnson. 2001. Evidence of chemical pathways of humification: a study of aquatic humic substances heated at various temperatures. Chem. Geol. 177:249–264. Lubal, P., D. Siroky, D. Fetsch, and J. Havel. 1998.The acidobasic and complexation properties of humic acids: Study of complexation of Czech humic acids with metal ions. Talanta 47:401-412. Lulakis, M.D., and Petsas, S.I. 1995. Effect of humic substances from vinecanes mature compost on tomato seedling growth. Bioresour Technol. 54: 179–182. Mackenzie, R. 1972. Differential Thermal Analysis, vol. 1. Academic Press, pp. 280–283. Marchant, H. 1964.Uber die reackiton von chrom mit diphenylcarbazid und diphenylxarbazon. Anal. Chim. Acta. 30: 11-17. Martin, F., F.J.Gonzalez-Vila, J.C. del Rio, and T. Verdejo.1994. Pyrolysis derivatization of humic substances: 1. Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide. J. Anal. Appl. Pyrolysis 28:71–80. Massiello, C.A. 2004. New directions in black carbon organic geochemistry. Mar. Chem. 92:201–213. McKnight, D.M., G.L. Feder, E.M. Thurman, R.L. Wershaw, and J.C. Westall.1983. Complexation of copper by aquatic humic substances from different environments. Sci. Total Environ. 28:65-76. Mckeague, J.A. 1967. An evaluation of 0.1M pyrophosphate and pyrophosphate- dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can. J. Soil Sci. 47:95-99. Mckeague, J.A., and J.H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13-22. McLean, E.O. 1982. Soil pH and lime requirement. p.119-224. In A. L. Page et al.(ed.) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA, Madison, WI. Mehra, O.P. and M.L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Miner. 7:317-327. Meier, M., K. Namjesnik-Dejanovic., P.A. Maurice., Y.P. Chin., and G.R. Aiken. 1999. Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite. Chemical Geology 157: 275–284. Miano, T.M., G. Sposito, and J.P. Martin, 1988. Fluorescence spectroscopy of humic substances. Soil Sci. Soc. Am. J. 52: 1016–1019. Miano, T.M., and N. Senesi. 1992. Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Sci. Total Environ. 117-118:41-51. Mohan, D., and C.U. Pittman. 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Harzard. Mater. 137:762-811. Nakayasu, K., M. Fukushima, K. Sasaki, S. Tanaka, and H. Nakamura. 1999. Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors. Environ. Toxicol. Chem. 18: 1085–1090. Neary, D.G., C.C. Klopatek., L.F. DeBano., and P.F. Ffolliott. 1999. Fire effects on belowground sustainability: a review and synthesis. For. Ecol. Manage. 122: 51-71. Nelson , D.W., and L.E. Sommers, 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Summer(ed.) Methods of soil analysis, Part3. ASA and SSSA, Madison, WI, USA. Niemeyer, J., J. Chen, and J.M. Bollag. 1992. Characterization of humic acids, composts, and peat by Disffuse reflectance and transmission Fourier transform infrared spectroscopy. Soil Sci. Soc. Am. J. 56:135-140. Orlov, D.S. 1986. Humus Acids of Soils. Balkema, Rotterdam. Palmer, C.D., Wittbrodt, P.R., 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92: 25–40. Parfift, R.L., A.R. Fraser., and V.C. Farmer. 1977. Adsorption on hydrous oxides. III. Fulvic acid and humic acid on goethite, gibbsite and imogolite. J. Soil Sci. 28: 289-296. Paul, R. W. and D.P. Carl. 1996. Reduction of Cr(V1) by soil humic acids. 1996. Soil Sci. 47:151-162. Pettine, M., I. Barra, L. Campanella, and F.J. Millero. 1998. Effect of metals on the reduction of chromium(VI) with hydrogen sulfide. Water Res. 32:2807-2813. Piccolo, A., P. Conte., E. Trivellone., and B. Van Lagen. 2002. Reduced heterogeneity of a lignite humic acid by preparative HPSEC following interaction with an organic acid: characterization of size-separates by Pyr-GC-MS and 1H-NMR spectroscopy. Environ. Sci. Technol. 36: 76-84. Rachel, C., T.D. Carolyn., A.L. Peter., and A. Lay. 2001. Studies on the genotoxicity of chromium: from the test tube to the cell. Coord. Chem. Rev. 216-217: 537-582. Raison, R.J., P.K. Khanna, and P.V. Woods. 2005. Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. For. Res. 15: 132–140. Raison, R.J. 1979. Modifications of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil. 51: 73– 108. Rhoades, J.D. 1982. Cation exchange capacity. p. 149-157.In Page et al., (ed.) Methods of soil analysis. Part II. 2nd edition. Roberts, W.B. 1965. Soil temperatures under a pile of burning logs. Austra. For. Res. 1: 21-25. Rundel, P.W. 1983. Impact of fire on nutrient cycles in Mediterranean-type ecosystems with reference to chaparral. in: F. J. Kruger, D.T. Mitchell and J. U. M. Jarvis (Eds.) Mediterranean-type ecosystems: The role of nutrients; Springer-Verlag, New York, p.192-207. Sackett, S.S., and S.M. Haase. 1992. Measuring soil and tree temperature during prescribed fires with thermocouple probes; USDA Forest Service, General Technical Report PSW-131. Safavi, A., N. Maleki, H.R. Shahbaazi. 2006. Indirect determination of hexavalent chromium ion in complex matrices by adsorptive stripping voltammetry at a mercury electrode. Talanta 68:1113-1119. Saiz-Jimenez, C. 1995. The origin of alkylbenzenes and thiophenes in pyrolysates of geochemical samples. Org. Geochem. 23:81–85. Schmidt, M. W.I., and A.G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implication, and current challenges. Global Biogeochem. Cycles 14:777-793. Shen, Y.S., S.L. Wang., S.T. Huang, Y.M. Tzou, and J.H. Huang. 2010. Biosorption of Cr(VI) by coconut coir: Spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. J. Hazard. Mater. 179: 160-165. Shen, Y.S., S.L. Wang, Y.M. Tzou, Y.Y. Yan, and W.H. Kuan. 2012. Removal of hexavalent Cr by coconut coir and derived chars – The effect of surface functionality. Biores. Technol. 104:165–172. Skjemstad, J.O., C.C. Reicosky, A.R. Wilts, and J.A. McGowan. 2002. Charcoal carbon in U.S. agricultural soils. Soil Sci. Soc. Am. J. 66: 1249–1255. Steelink, C., A. Petsom. 1987. Structural features of lignins and humic substances as revealed by spin-echo and broadband decoupled C-13 NMR spectroscopy. Sci. Total Environ. 62:165-174. Steelink, C.1985. Implications of elemental characteristics of humic substances. p.457-476. In G.R. Aiken, D.M. McKnight, R.L. Wershaw, and P. ManCarthy.(eds.) Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, New York. Stevenson, F.J. 1982. Humus Chemistry, John Wiley& Sons, New York, p.13-55. Stevenson, F.J. 1994. Humus Chemistry: Genesis, Composition, Reactions, second ed, Wiley, New York. Suksabye, P., P. Thiravetyan, W. Nakbanpote, and S. Chayabutra. 2007. Chromium removal from electroplating wastewater by coir pith. J. Hazard. Mater. 141: 637-644. Suman, D.O. 1996. A five-century sedimentary geochronology of biomass burning in Nicaragua and Central America. In Biomass Burning and Global Change (ed. Joel S. Levine), MIT Press, Cambridge, MA. Swift, R.S.1985. Fractionation of soil humic substances, p. 387-408, In G. R. Aiken, ed. Humic substances in soil, sediment and water. Geochemistry, isolation and characterization.Wiley Intersci., New York. Tate, R.L. 1987.Soil Organic Matter, John Wiley and Sons, New York, pp.1-25, 114-164. Tsai, C.C., Z.S. Chen., C.I. Kao, F. Ottner, S.J. Kao, and F. Zehetner. 2010. Pedogenic Development of volcanic ash soils along a climosequence in northern Taiwan. Geoderma 156: 48-59. Tong, X.j., J.Y. Li, J.H. Yuan, and R.K. Xu. 2011. Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Engin. 172:828–834. Tzou, Y.M., M.K. Wang, and R.H. Loeppert. 2003. Effect N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) on Cr(VI) reduction by Fe(II). Chemosphere 51:993-1000. Wang, T.S.C., S.W. Li and Y.L. Ferg. 1978. Catalytic polymerization of phenolic compound by clay minerals. Soil Sci.126:15-21. Wang, T. S. C., M. C. Wang, Y. L. Ferg and P. M. Huang. 1983. Catalytic systhesis of Humic Substances by Natural Clays, Silts, and Soils. Soil Sci. 135:360-360. Wang, X., S.O. Pehkonen, and A.J. Ray. 2004. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 43:1665-1672. Wang, X.S., Z.P. Lu, H.H. Miao, W. He, and H.L. Shen. 2011. Kinetics of Pb (II) adsorption on black carbon derived from wheat residue. Chem. Engin. 166:986–993. Win, Y. Y., M.U. Kumke, C.H. Specht, A.J. Schindelin, G. Kolliopoulos, G. Ohlenbusch, G. Kleiser, S. Hesse, and F. H. Frimmel. 2000. Influence of oxidation of dissolved organic matter (DOM) on subsequent water treatment processes. Water Res. 34:2098-2104. Wittbrodt, P.R., and C.D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29:255-263. Wittbrodt, P.R., and C.D. Palmer. 1996. Reduction of Cr(VI) by soil humic acids. Euro. J. Soil. Sci. 47:151-162. Wittbrodt, P.R., and C.D. Palmer. 1996. Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ. Sci. Technol. 30: 2470-2477. Xie, W., Z. Gao, K. Liu, W.P. Pan, R. Vaia, D. Hunter, and A. Singh. 2001. Thermal characterization of organically modified montmorillonite. Thermochimica Acta. 8: 339-350. Xing, B. 2001. Sorption of naphthalene and phenanthrene by soil humic acids. Environ. Pollut. 111:303-309. Xing, B., J.J. Pignatello, and B. Gigliotti. 1996. Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ. Sci. Technol. 30:2432-2440. Yang, Y.N. and G.Y. Sheng. 2003. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ. Sci. Technol. 37: 3635–3639. Young, K., and I.J. Liang. 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35:135-142.
摘要: 
表面燃燒產生的熱會傳遞至表土中,會塑造出一個炭化的環境進而改變土壤的組成,如無機礦物及有機質結構,也會影響可溶性有機碳的釋出,這些土壤組成受熱的改變,亦會影響隨後經灌溉水或落塵進入土壤的污染物,影響其在炭化土壤系統中遷移及宿命,由於鉻為台灣地區常見的重金屬,故本研究將以鉻為目標污染物,探討土壤組成受熱改變下,如何影響鉻在該土壤中的轉變。
本研究將採集台灣北部陽明山及中部彰化快官地區的土壤,並萃取此土壤中之腐植酸,且利用高溫爐進行100~600度炭化,炭化後之樣品利用元素分析、熱重分析、光譜分析觀察有機質的化學組成變化,並以總有機碳分析儀(TOC)觀察其可溶性有機碳的釋出隨炭化溫度的改變,最後則探討Cr(VI)在炭化土壤以及屏除無機礦物影響的腐植酸系統中的交互反應。
兩種試驗土壤(陽明山及彰化快官)經由元素分析與熱重分析下發現,其結構中的氧隨炭化溫度的上升而逐漸消失,且結構趨向高芳香性的類似黑碳物質,(FTIR及C13NMR)光譜分析進一步發現,炭化處理下,有機質中脂肪族及含氧官能基如羧基會逐漸減弱,而相對提升芳香性及酚基碳的比例,表示炭化超過300度土壤其有機組成會逐漸轉變成非極性的芳香性碳結構。陽明山土壤以200度炭化時,其可溶性有機碳(DOC)溶出可達25 mg L-1,但DOC之溶出在低或高於此溫度均會降低,而彰化快官土壤DOC的釋出量則隨著炭化溫度增高而減少,此結果與陽明山及彰化快官抽出之腐植酸,經炭化處理下DOC的溶出有相同的趨勢,故推測在低溫(<200度)炭化陽明山土壤中,DOC之低濃度可能導因於豐富的無定型鐵鋁氧化物將DOC吸附住而抑制其釋出於溶液中。當將0.1923 mM Cr(VI)加入炭化低於200度之陽明山土壤時,由於土壤有機質緩慢的電子轉移,或無定型鐵鋁氧化物固定住高還原活性的DOC,導致低於200度處理之陽明山土壤對Cr(VI)的移除量較少。200度炭化之陽明山樣品移除Cr(VI)比例最高(達4 mg g-1 soil),除了加熱暴露出的新的還原位置外,其DOC亦貢獻超過50 % Cr(VI)的還原量;而炭化超過300度後,Cr(VI)的還原量為可能為新生成的黑碳官能基所控制,無機黏土礦物、鐵鋁氧化物及殘存有機分子之含氧官能基可能為控制還原形成Cr(III)的主要角色。彰化土壤低於200度炭化下,由於其存有較高量的DOC及有機質,因而提高Cr(VI)的移除比例,而經炭化200及250度的樣品,其移除Cr(VI)的比例最高達99 %,與陽明山土壤有一樣的趨勢,主要是DOC的貢獻,炭化超過250度後,主要為殘存官能基(酚基)及無機礦物控制Cr(VI)的移除及Cr(III)的吸附。為了進一步屏除無機礦物影響,利用土壤所萃取出之腐植酸進行相同的炭化、溶出及Cr(VI)反應實驗,與陽明山腐植酸系統相較,彰化快官腐植酸經200度炭化下,其移除Cr(VI)的比例大幅下降,此可能與在此炭化溫度下含氧官能基及DOC溶出量大量減少有關,而影響對Cr(VI)之還原能力;超過200度炭化後腐植酸移除Cr(VI)的趨勢大致與土壤系統相同,隨炭化溫度之增加而遞減,然而可推測土壤系統中的無機黏土礦物主要為控制Cr的角色,提供吸附位置導致土壤系統中Cr的高吸附量,反之,腐植酸系統中則無此高吸附量。

Surface fire may lead to a temperature higher than 600oC on a fire-impacted surface soil which would induce heat-transferring into the CO2-riched subsoil, creating a condition in the subsoil similar to that of carbonization. As a result, the chemical compositions of soil organic matters (SOM) and the structures of specific inorganic minerals could be altered upon surface fires, influencing indirectly the transportations and transformations of pollutants which may enter the fire-impacted environments. In the study, two soils collected from Yangminshan and Changhua areas were carbonized at up to 600oC with limited air to simulate soils experiencing a surface fire, and Cr(VI) removal on the carbonized soils was investigated. NMR and FTIR analyses demonstrated a remarkable change of SOM structures at 300~400oC. TGA-MS spectra indicated that some small organic fragments (e.g. C2H4, CH3OH and C3H8) were the major components in the evolved gases from the pyrolyzed soils. Humic acids (HA) extracted from the two soils exhibited the similar heat-dependent changes in their structures. These structural alterations of soil components upon heating showed strong influences in Cr(VI) removal. For instance, Cr(VI) removal, including reduction and adsorption, on Yangmingshan soil was low when the carbonized temperatures were £ 150oC. A maximum amount of Cr(VI) removal (ca. 4 mg g-1 soil) occurred for the 200oC-carbonized soils, attributed mainly to a significant increase of Cr(VI) reduction by 0.01 M KCl extractable organic carbon (DOC) with abundant carboxylic groups. Nonetheless, the formation of aromatic C upon carbonization of the soil at >400 0C was responsible for Cr(VI) reduction. Accompanied with the disappearance of organic groups upon carbonization of Changhua soil, extractable C (derived from decompositions of a portion of organic molecules or loosed bound molecules) reached the highest at 200~250 oC. The highest amount of Cr removal on Changhua soil also occurred when the soil was treated within the specific temperature ranges. A significant increase of Cr(VI) reduction by extractable C may lead to the result. Inorganic minerals played an important role in controlling Cr adsorption, particularly when the surface bounded organic compounds were decomposed and “clean” mineral surfaces were exposed at a higher carbonized temperature. 200oC-carbonized Changhua HA exhibited a significant declination of Cr(VI) reduction, resulting probably from the decrease of O-containing groups and DOC upon carbonization at the specific temperature. Above 200oC, Cr(VI) removal on HAs decreased with an increase in carbonized temperatures which was similar to those of soil systems. However, Cr(III)/Cr(VI) adsorption on HAs was generally lower as compared with that on soil systems because of the absence of inorganic minerals.
URI: http://hdl.handle.net/11455/25606
其他識別: U0005-1608201218302100
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.