Please use this identifier to cite or link to this item:
標題: 不同粒徑針鐵礦影響六價鉻吸附與光催化還原反應
The effects of particle sizes of goethite on the adsorption and photocatalytic reduction of Cr(VI)
作者: 吳秉學
Wu, Pin-Hsueh
關鍵字: 針鐵礦;goethite;六價鉻;粒徑;吸附;光催化;Cr(VI);particle size;adsorption;photocatalytic reduction
出版社: 土壤環境科學系所
引用: 1. 吳培堯、劉沛宏、許益源、陳怡君、楊致行,2007,鉻酸場址整治,台灣土壤及地下水環境保護協會簡訊(TASGEP Newsletter) 第二十二期 第4頁-第8頁。 2. 蕭炎宏、王秀文、王明光、邵屏華、飯塚義之,2005,林口台地紅壤之礦物學與岩象學研究,中國地質學會九十四年年會暨學術研討會,論文摘要集,第218 頁。 3. 熊慧欣、周立祥,2008,不同晶型羥基氧化鐵(FeOOH)的形成及其在吸附去除水中Cr(VI)上的作用,岩石礦物學雜,第二十七期,第600頁-607頁。 4. 黃文樹、林溫慧、許正一、蔡橫,2011,八卦台地北部階地土壤化育及其在地型比對之應用,地理學報,第六十一期,第123頁-145頁。 5. 經濟部工業局,金屬表面處理業,土壤及地下水污染預防與整治技術手冊,2005。 6. Anschutz, A. J., Penn, R. L. 2005. Reduction of crystalline iron (III) oxyhydroxides using hydroquinone: Influence of phase and particle size, Geochem. Trans., 6(3) : 60-66 7. Aylmore, L.A.G. 1974. Gas sorption in clay mineral system, Clays Clay Miner., 22 : 175-183 8. Baral, S.S., Das, S.N., Rath, P. 2006. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust, Biochem. Eng. J., 31 : 216–222 9. Barrett, E. P., Joyner, L. G., Halenda, P. P. 1951. The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms, J. Am. Chem. Soc., 73 : 373-380. 10. Bashir, S., McCabe, R.W., Boxall, C., Leaver, M.S., Mobbs, D. 2009. Synthesis of α- and β-FeOOH iron oxide nanoparticles in non-ionic surfactant medium, J. Nanopart. Res., 11 : 701–706 11. Bowen, H.J.M. 1979. Environmental chemistry of the elements. Academic Press, New York 12. Callahan, M.A., 1979. Water-related environmental fate of 129 priority pollutants, Vol. II. United States. Environmental Protection Agency. EPA/440/4-79-029, Washington, DC. 13. Chen, Y.H., Li, F.A. 2010. Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts, J. Colloid Interface Sci., 347 : 277–281 14. Cheung, C.W., Porter, J.F., Mckay, G. 2001. Sorption kinrtic andysis for the removal of cadmium ions from effurnts using bone char. Water Res., 35 : 605-612 15. Christensen, A.N., Jensen, T.R., Bahl, C.R.H., DiMasi, E. 2007. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation, J. Solid State Chem., 180 : 1431–1435 16. Cornell, R.M., and U. Schwertmann. 1996. the iron oxides. Wiley-VCH, New York. 17. Cudennec, Y., Lecerf, A. 2006. The transformation of ferrihydrite into goethite or hematite, revisited, J. Solid State Chem., 179 : 716–722 18. De Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., Heuvel, A., Osiga, T.J. 1966. The t-curve of multimolecular N2-adsorption, J. Colloid Interface Sci., 21 : 405-414 19. De Young, H.J., Lee, M.P., Lipin, B.R. 1984. International strategic minerals inventory summary report-chromium, P.41.1 U.S. Geological Survey Circular. 20. Deng, B., Stone., A.T. 1996. Surface-catalyzed chromium(VI) reductiom: Reactivity comparisons of different organic reductants and different oxide surface, Environ Sci. Technol., 30: 2482-2494. 21. Duranoglua, D., Trochimczuk, A.W., Beker, U. 2012. Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer, Chem. Eng. J., 187 : 193– 202 22. Eaton, A.D., Clesceri, L.S., Greenberg, A.E. 1995. Standard methods for the examination of water and wastewater, APHA, Washington, DC, 23. Elias, M., Chartier, C., Prevot, G., Garay, H., Vignaud, C. 2006. The colour of ochres explained by their composition, Mater. Sci. Eng., B 127 : 70–80 24. Fisher, J.A. 1990. The chromium program, Harper & Row, New York. 25. Gasser, M.S., Morad, G.A., Aly, H.F. 2007. Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents, J. Hazard. Mater., 142 : 118–129 26. Ghose, S. K., Waychunas, G.A., Trainor, T.P., Eng, P.J. 2010. Hydrated goethite (α-FeOOH) (1 0 0) interface structure: Ordered water and surface functional groups, Geochim. Cosmochim. Acta, 74 : 1943–1953 27. Gomez, J.A.M., de Resende, V.G., Antonissen, J., De Grave, E. 2011. Characterization of the effects of silicon on the formation of goethite, Corros. Sci., 53 : 1756–1761 28. Gonzaez, G., Sagarzazu, A., Villalba, R. 2000. Study of the mechano-chemical transformation of goethite to hematite by TEM and XRD, Mater. Res. Bull., 35 : 2295–2308 29. Grossl, P.R., Eick., M. 1997. Arsenate and Chromate Retention Mechanisms on Goethite. 2. Kinetic Evaluation Using a Pressure-Jump Relaxation Technique, Environ. Sci. Technol., 31: 321-326 30. Ho, Y.S., Mckay, G. 1999. Comparative sorption kinetics studies of dyes and aromatic compounds onto fly ash, J. Environ Sci. Health, A34 : 1179-1204 31. Huang, L., Hu, H., Li, X., Li, L.Y. 2010. Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite, Appl. Clay Sci., 49 : 281–287 32. HAYES K. F., ROE A. L., BROWN G. E., HODGSON K. O., LECKIE J. O., and PARKS G. A. ( 1987) In situ X-ray absorption study of surface complexes: Selenium oxyanions on α-FeOOH. Science 238, 783-786. 33. Iwasaki, T., Sato, N., Kosaka, K., Watano, S., Yanagida, T., Kawai, T. 2011. Direct transformation from goethite to magnetite nanoparticles by mechanochemical reduction, J. Alloys Compd., 509 : L34–L37 34. Juang, R.S., Chem, M.L. 1997. Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins, Ind. Eng. Chem. Res., 36 : 813-820 35. Katoh, M., Orihara, M., Moriga, T., Nakabayashi, I. 2001. In Situ XRD and In Situ IR spectroscopic analyses of structural change of goethite in methane oxidation, J. Solid State Chem., 156 : 225-229 36. Kim, C., Lan, Y., Deng, B. 2007. Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction, Geochem. J., 41: 397-405 37. Koch, C.J.W., Madsen, M.B., Morup, S., Charistiansen, G., Gerward, L., Villadsen, J., 1986. Effect of heating on microcrystalline synthetic goethite, Clays Clay Miner., 34 : 17-24 38. Kosmulski, M., Durand-Vidal, S., Maczka, E., Rosenholm, J. B. 2004. Morphology of synthetic goethite particles, J. Colloid Interface Sci., 271 : 261–269 39. Lakshmipathiraj, P., Narasimhan, B.R.V., Prabhakar, S., Raju, G.B. 2006. Adsorption of arsenate on synthetic goethite from aqueous solutions, J. Hazard. Mate., B 136 : 281–287 40. Levenspiel, O. 1999. Chemical reaction engineering, 3rd ed., Wiley, New York 41. Li, W., Zhang, S., Shan X. 2007. Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption, Colloids Surf., A293: 13–19 42. Liu, D., Wang, H., Dong, H., Qiu, X., Dong, X., Cravotta, C.A. 2011. Mineral transformations associated with goethite reduction by Methanosarcina barkeri, Chem. Geol., 288 : 53–60 43. Liua, H., Li, P., Zhu, M., Wei, Y., Sun, Y. 2007. Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite, J. Solid State Chem., 180 : 2121–2128 44. Liu, X., Wang, J., Hu Y. 2008. Adsorption of copper(Ⅱ) and chromium(Ⅵ) on diaspore, J. Cent. South Univ. Technol., 15: 515−519 45. Loffler, L., Mader, W. 2006. Anisotropic X-ray peak broadening and twin formation in hematite derived from natural and synthetic goethite, J. Eur. Ceram. Soc., 26 : 131–139 46. Mckey, G., Blair, H.S., Gardner, J. 1983. The adsorption of dyes in chitin. Ⅲ. Intraparticle diffusion processes, J. Appl. Polm. Sci., 28 : 1767-1778 47. Mohapatra, M., Anand, S., Das, R.P., Upadhyay, C., Verma, H.C. 2002. Aqueous reduction of crystalline goethite under ammoniacal conditions, Hydrometallurgy, 65 : 227–235 48. Mohapatra, M., Rout, K., Anand, S. 2009. Synthesis of Mg(II) doped goethite and its cation sorption behavior, J. Hazard. Mater., 171 : 417–423 49. Mohapatra, M., Gupta, S., Satpati, B., Anand, S., Mishra, B.K. 2010. pH and temperature dependent facile precipitation of nano-goethite particles in Fe(NO3)3–NaOH–NH3NH2HSO4–H2O medium, Colloids Surf., A 355 : 53–60 50. Mustafa, G., Singh, B., Kookana, R.S. 2004. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: effects of pH and index cations, Chemosphere, 57 : 1325–1333 51. Mustafa, S., Khan, S., Zaman, M.I., Husain, S.Y. 2009. The role of Pb2+ ions doping in the mechanism of chromate adsorption by goethite, Appl. Surf. Sci., 255 : 8722–8729 52. Oguz, E., 2005. Adsorption characteristics and the kinetics of the Cr(VI) on the Thuja oriantalis, Colloids Surf., A 252 : 121–128 53. Palmer, C.D., Puls, R.W. 1994. Natural attenuation of hexavalent chromium in groundwater and soils, EPA/540/5-94/505. U.S. EPA, Office of Solid Waste and Emergency Response and Office of Research and Development. 54. Pettine, M., Capri. S., 2005. Digestion treatments and risks of Cr(III)-Cr(VI) interconversions during Cr(VI) determination in soils and sediments—a review, Anal. Chim. Acta, 540 : 231-238 55. Pomies, M.P., Menu, M., Vignaud, C. 1999. TEM observations of goethite dehydration: Application to archaeological samples, J. Eur. Ceram. Soc., 19 : 1605–1614 56. Post, J.E., Buchwald, V.F. 1991. Crystal structure refinement of akaganeite, American Mineral, 76 : 272-277 57. Pozas, R., Ocana, M., Morales, M.P., Serna, C.J. 2002. Uniform nanosized goethite particles obtained by aerial oxidation in the FeSO4–Na2CO3 system, J. Colloid Interface Sci., 254 : 87–94 58. Prélot, B., Villiéras, F., Pelletier, M., Gérard, G., Gaboriaud, F., Ehrhardt, J.J., Perrone, J., Fedoroff, M., Jeanjean, J., Lefèvre, G., Mazerolles, L., Pastol, J.L., Rouchaud, J.C., Lindecker, C. 2003. Morphology and surface heterogeneities in synthetic goethites, J. Colloid Interface Sci., 261 : 244–254 59. Puccia, V., Luengo, C., Avena, M. 2009. Phosphate desorption kinetics from goethite as induced by arsenate, Colloids Surf., A 348 : 221–227 60. Rawajfih, Z., Nsour, N. 2008. Thermodynamic analysis of sorption isotherms of chromium(VI) anionic species on reed biomass, J. Chem. Thermodyn., 40 : 846–851 61. Reynolds, M., Stoddard, L., Bespalov, I., Zhitkovich, A. 2007. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair, Nucleic Acids Res., 35 : 465–476 62. Sarkar, D., Chattoraj, D. K. 1993. Activation parameters for kinetics of protein adsorption at silica-water interface, J. Colloid Interface Sci., 175 : 219-226 63. Schulze, D.G. 1984. The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them, Clays Clay Miner., 32 : 36-44 64. Schwertmann, U., Murad, E. 1983. Effect of pH on the formation of goethite and form ferrihydrite, Clays Clay Miner., 31 : 277-284 65. Shanker, A.N., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. 2005. Chromium toxicity in plants, Environment International, 31 : 739– 753 66. Sing, K.S.W., Verett, E D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. 1985. Reporting physisorption deta for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl Chem., 57 : 603-619 67. Sugden, K.D., Martin, B.D., Toxicol., C.R. 2011. Author manuscript; available in PMC 2011 February 15. 68. Su, C.M.; Puls, R.W. Nitrate Reduction by Zerovalent Iron: Effects of Formate, Oxalate, Citrate, Chloride, Sulfate, Borate, and Phosphate. Environ. Sci. Technol. 2004, 38, 2715-2720. 69. Torrent, J., Barron, V., Schwertmann, U. 1990. Phosphate adsorption and desorption by goethites differing in crystal morphology, Soil Sci. Soc. Am. J., 54 : 1007-12. 70. Trivedi, P., Axe, L. 2001. Ni and Zn sorption to amorphous versus crystalline iron oxides: Macroscopic studies, J. Colloid Interface Sci., 244 : 221–229 71. Tsai, W.T., Lai, C.W., Hsien, K.J. 2003. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution, J. Colloid Interf. Sci., 263 : 29–34 72. Tseng, R.L., Wu, F.C., Juang, R.S., 2003. Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons, Carbon, 41 : 487-495 73. Tutem, E., Apak, R., Unal, G. F. 1998. Adsorptive removal of chlorophenols from water by bituminous shale, Water Res., 32 : 2315-2324 74. Tzou, Y.M., R.H. Loeppert, and M.K. Wang. 2003. Effect of phosphate, HEDTA, and light source on Cr(VI) retention by goethite. J. Soil and Sediment containmination. 12(1):69-84. 75. Verma, A., Chakraborty, S., Basu, J.K. 2006. Adsorption study of hexavalent chromium using tamarind hull-based adsorbents, Sep. Purif. Technol., 50 : 336–341 76. Wainipee, W., Weiss, D.J., Sephton, M.K.,Coles, B.J., Unsworth, C., Court, R. 2010. The effect of crude oil on arsenate adsorption on goethite, Water Res. 44 : 5673-5683 77. Wan, Y., Bao, Y., Zhou, Q., 2010. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil, Chemosphere, 80 : 807–812 78. Wang, K., Xing, B. 2004. Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite, Environ. Pollut., 127 : 13–20 79. Wang, T., Jin, Y., Wang, Z., Yu, Z. 1998. A study of the morphology of the goethite crystallization process, Chem. Eng. J., 69 : 1-5 80. Weber, W.J., Morris, J.C., Conf, P.I. 1962. On water pollution symposium, vol. 2. Oxford: Pergamon Press 81. Weerasooriya, R. Tobschall, H.J. 2000. Mechanistic modeling of chromate adsorption onto goethite, Physicochem. Eng. Aspects, 162 : 167–175 82. Wu, F.C., Tseng, R.L., Hu, C.C. 2005. Comparisons of properties and adsorption performance of KOH-activated and steam-activated carbons, Microporous Mesoporous Mater, 80 : 95-106 83. Wu, W.C., Wang, S.L., Tzou, Y.M., Chen, J.H., Wang, M.K. 2007. The adsorption and catalytic transformations of chromium on Mn substituted goethite, Appl. Catal., B 75 : 272–280 84. Yean, S., Cong, L., Yavuz, C.T., Mayo, J.T., Yu, W.W., Kan, A.T., Colvin, V.L., Tomson, M.B. 2005. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate, J. Mater. Res., 20 : 3255-3264 85. Zhao, X., Guo, X., Yang, Z., Lin, H., Qian, Q. 2011. Phase-controlled preparation of iron (oxyhydr)oxide nanocrystallines for heavy metal removal, J. Nanopart. Res., 13 : 2853–2864 86. Zhua, J., Huang, Q., Pigna, M., Violante, A. 2012. Competitive sorption of Cu and Cr on goethite and goethite–bacteria complex, Chem. Eng. J., 179 : 26– 32 87. ZACHARA J. M., C. E. COWAN, R. L. SCHMIDT, AND C. C. AINSWORTH. 1988. CHROMATE ADSORPTION BY KAOLINITE. Clays and Clay Minerals, Vol. 36, No. 4, 317-326.
本研究主要探討不同粒徑之針鐵礦與環境中的毒性陰離子六價鉻之交互作用。針鐵礦的製備採用ferrihydrite熱轉變法、硝酸鐵酸式法和硫酸鐵法分別合成22、139和449 nm三種不同粒徑針鐵礦,另外也以Schwertmann合成法來進行較大粒徑的針鐵礦(849和1207 nm)。合成的針鐵礦樣品利用雷射粒徑儀分析和穿透顯微鏡(TEM)觀測其粒徑及外部型態,以X光粉末繞射儀(XRD)鑑定針鐵礦結晶,以及利用BET比表面積儀和等電位點(ZPC)儀器量測各種粒徑之表面積和表面電位。不同粒徑之針鐵礦對六價鉻的吸附,分別符合Elovich動力模式和Langmuir等溫模式,針鐵礦對六價鉻的吸附量(qmon)介於0.0707-0.207 mmol/g之間,隨針鐵礦粒徑大小之降低而增加,此增加與比表面積之大小有關且其與粒徑大小呈線性關係。隨pH值升高,各粒徑之針鐵礦對六價鉻的吸附均在pH 6-8間有明顯的下降,此與六價鉻之物種轉變為CrO42-或與針鐵礦表面負電荷及氫氧離子之增加有關。針鐵礦對六價鉻的吸附熱隨粒徑之降低而增高,此可能與被吸附的六價鉻從小粒徑針鐵礦的脫附能力較低有關。小粒徑針鐵礦對六價鉻催化還原為三價鉻的能力較高,此可能與小粒徑針鐵礦對六價鉻的吸附能力高,且電子在其表面轉移的能力較快有關。

This study mainly investigates the interactions of Cr(VI), a toxic anion in the environment, with goethite with different particle sizes. Several methods were used for goethite syntheses, including ferrihydrite heat transformation, ferric nitrate acidification, and ferric sulfate, which gave particle sizes of 22, 139, and 449 nm, respectively. In addition, a method adopted from Schwertmanm was employed for preparing goethite with greater particle sizes of 849 and 1207 nm. The results of powder X-ray diffraction (XRD) conformed the goethite structures for each synthesized samples. The particle sizes and morphologies of these goethite samples were further verified using a laser scattering particle size distribution analyzer and a transmission electron microscopy (TEM). Surface areas and pHzpc (zero point charge) for each particle were measured using a BET surface area meter and Zeta meter. Cr(VI) adsorption on goethite complied with Elovich kinetic model and Langmuir adsorption isotherm, and the adsorption behaviors was indifferent with the particle sizes of goethite. The maximum adsorption of Cr(VI) on goethite was in the range 0.0707-0.207 mmol/g, depending on the particle size of goethite. A liner relationship existed between the amount of Cr(VI) adsorption and the goethite particle sizes and the smaller goethite particle exhibited higher adsorption ability, corresponding to its higher surface area. A significant declination of Cr(VI) adsorption on goethite was observed at pH 6-8, related probably to the change in Cr(VI) species (i.e., converting from HCrO4- to CrO42- at the specific pH) or/and an increase of surface negative charges and OH ion concentrations. An apparent endothermic reaction was observed while adsorbing Cr(VI) on goethite. Cr(VI) adsorption on smaller particle size of goethite had higher absorption heat which may lead to a decrease of Cr(VI) desorption from the surfaces of small particles. Small particles revealed a higher efficiency for photo-catalytic reduction of Cr(VI) on goethite, attributing to the higher adsorption ability of Cr(VI) and rapid electric transferring on the surfaces of small goethite particles.
其他識別: U0005-1608201211071900
Appears in Collections:土壤環境科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.