Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25610
標題: 以黏粒修飾電極法對汞離子之分析與反應研究
Electroanalytic Reactions of Mercury Ions Using Clay-modified Electrodes
作者: 王文毅
Wang, Wen-Yi
關鍵字: 烷銨插層黏粒;alkylammonium-intercalated clay;電化學;汞;electrochemistry;mercury
出版社: 土壤環境科學系所
引用: 姚開元、陳鴻基、曾志明。2009。不同黏土礦物修飾鍍銅電極之電化學分析與多巴胺之偵測。台灣農學會報10: 364-379。 陳鴻基、李國欽、莊作權。1995。利用黏粒修飾電極探討巴拉刈在黏土礦物膜層中的移動性。中華民國雜草學會會刊16: 1-13。 陳鴻基、曾志明。2003a。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動性的影響。興大農林學報52: 1-19。 陳鴻基、曾志明。2003b。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活性的影響。中華農學會報4: 429-446。 陳鴻基。2000。不同離子對巴拉刈在土壤粘粒膜層中移動性的影響。農林學報49: 1-17。 鄭世堃、陳鴻基、曾志明。2007。以電化學方法探討烷基銨插層膨潤石類之表面電荷特性。中華農學會報8: 336-354。 Abollino, O., A. Giacomino, M. Malandrino, G. Piscionieri, and E. Mentasti. 2008. Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode. Anal. Chem. 20: 75-83. Abollino, O., M. Aceto, M. Malandrino, C. Sarzanini, and E. Mentasti. 2003. Adsorption of heavy metals on Na-montmorillonite. effect of pH and organic substances. Water Res. 37: 1619-1627. Adebajo, M.O., R.L. Frost, J.T. Kloprogge, O. Carmody, and S. Kokot. 2003. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10: 159-170. Adriano, D.C. 1986. Trace elements in the terrestrial environment. Springer-Verlag. New York. Akyuz, S., and T. Akyuz. 2003. FT-IR spectroscopic investigations of surface and intercalated 2-aminopyrimidine adsorbed on sepiolite and montmorillonite from Anatolia. J. Mol. Struct. 651-653: 205-210. Alloway, B.J. 1995. Heavy Metal in Soils. 2nd ed. John Wiley & Sons. New York. Alther, G. 2002. Using organoclays to enhance carbon filtration. Waste Manage. (Amsterdam, Neth.). 22: 507-513. Alther, G. 2006. Contam. Soils (Contaminated Soils, Sediments and Water). 10: 227-237. Andersson, A. 1979. The biogeochemistry of mercury in the environment. In J. O. Nriagu (ed.). Elsevier. Amsterdam. Chapter 4. Andrades, M.S., M.S. Rodriguez-Cruz, M.J. Sanchez-Martin, and M. Sanchez-Camazano. 2004. Effect of the modification of natural clay minerals with hexadecylpyridinium cation on the adsorption-desorption of fungicides. Int. J. Environ. Anal. Chem. 84: 133-141. Arias, M., M.T. Barral, D. DaSilva-Carvalhal, and J.C. Mejuto. 2004. Interaction of Hg(II) with kaolin-humic acid complexes. Clay Miner. 39: 35-45. Baldassari, S., S. Komarneni, E. Mariani, and C. Villa. 2006. Microwave versus conventional preparation of organoclays from natural and synthetic clays. Appl. Clay Sci. 31: 134-141. Banat, F.A., B. Al-Bashir, S. Al-Asheh, and O. Hayajneh. 2000. Adsorption of phenol by bentonite. Environ. Pollut. 107: 391-398. Barrow, N.J., 1985. Reactions of anions and cations with variable charge soils. Adv. Agron. 38: 183-230. Barrow, N.J., and V.C. Cox. 1992. The effects of pH and chloride concentration on mercury sorption. I. by goethite. J. Soil Sci. 43: 295-304. Benjamin, M.M., and J.O. Leckie. 1981. Conceptual model for metal- ligand-surface interactions during adsorption. Environ. Sci. Technol. 15: 1050-1057. Berchmans, S., S. Arivukkodi, and V. Yegnaraman. 2000. Self-assembled monolayers of 2-mercaptobenzimidazole on gold: stripping voltammetric determination of Hg(II). Electrochem. Commun. 2: 226-229. Bergaya, F., Theng, B.K.G., Lagaly, G. (Eds.), 2006. Handbook of Clay Science. In Elsevier, Amsterdam. Bergstrom, R.F., D.R. Kay, and J.E. Wagner. 1981. High-performance liquid chromatographic determination of penicillamine in whole blood, plasma, and urine. J. Chromatogr. 222: 445-452. Bernalte, E., C. Marin Sanchez, and E. Pinilla Gil. 2011. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal. Chim. Acta. 689: 60-64. Bernalte, E., C. Marin Sanchez, and E. Pinilla Gil. 2012. Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples. Sens. Actuators B. 161: 669-674. Betega de Paiva, L., A.R. Morales, and F.R. Valenzuela Diaz. 2008. Organoclays: properties, preparation and applications. Appl. Clay Sci. 42: 8-24. Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B.D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31: 860-865. Boaventura, G.R., A.C. Barbosa, and G.A. East. 1997. Multivessel system for cold-vapor mercury generation. determination of mercury in hair and fish. Biol. Trace Elem. Res. 60: 153-161. Bohn, H.L., B.L. McNEAL, and G.A. O’CONNOR. 2001. Soil chemistry. 3nd ed. John Wiley & Sons. New York. Bowen, H.J.M. 1979. Environmental chemistry of the elements. Academic Press. London. Buica, G.O., C. Bucher, J.C. Moutet, G. Royal, E. Saint-Aman, and E.M. Ungureanu. 2009. Voltammetric sensing of mercury and copper cations at poly(EDTA-like) film modified electrode. Electroanalysis. 21: 77-86. Cabello-Carramolino, G., and M.D. Petit-Dominguez. 2008. Application of new sol-gel electrochemical sensors to the determination of trace mercury. Anal. Chim. 614: 103-111. Carrizosa, M.J., W.C. Koskinen, M.C. Hermosin, and J. Cornejo. 2001. Dicamba adsorption-desorption on organoclays. Appl. Clay Sci. 18: 223-231. Celebi, M.S., H. Ozyoruk, A. Yıldız, and S. Abacı. 2009. Determination of Hg2+ on poly(vinylferrocenium) (PVF+)-modified platinum electrode. Talanta. 78: 405-409. Chang, J.H., Y.V. An, D. Cho, and E.P. Giannelis. 2003. Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica(II). Polymer. 44: 3715-3720. Chekmeneva, E., J.M. Diaz-Cruz, C. Arino, and M. Esteban. 2009. Use of rotating Au-thin film electrode for the differential pulse voltammetric study of Hg2+ complexation. J. Electroanal. Chem. 635: 58-62. Cheng, K.C., and P.Y. Chen. 2008. Polyviologen modified glassy carbon electrode employed for anodic stripping voltammetric determination of mercury(II). Electroanalysis. 20: 207-210. Dentel, S.K., A.I. Jamrah, and D.L. Sparks. 1998. Sorption and cosorption of 1,2,4-trichlorobenzene and tannic acid by organo-clays. Water Res. 32: 3689-3697. Dias Filho, N.L., and D. Ribeiro do Carmo. 2005. Stripping voltammetry of mercury(II) with a chemically modified carbon paste electrode containing silica gel Functionalized with 2,5-dimercapto-1,3,4- thiadiazole. Electroanalysis. 17: 1540-1546. Dias Filho, N.L., G.L. Okajima, G. Pires, R.M. Costa, D. Ribeiro do Carmo, and A.H. Rosa. 2008. Voltammetry of mercury(II) based on an organo- clay modified graphite electrode. Portugaliae Electrochim. Acta. 26: 163-179. Domenech, A., M.T. Domenech-Carbo, E. Garcia-Espana, and Ma.D. Soriano. 1999. Voltammetric determination of trace mercury in concentrated chloride media using polymer-film electrodes modified with polyammonium macrocyclic receptors. Analyst. 124: 1661-1667. Dultz, S., B. Riebe, and C. Bunnenberg. 2005. Temperature effects on iodine adsorption on organo-clay minerals II. structural effects. Appl. Clay Sci. 28: 17-30. Favre, H., and G. Lagaly. 1991. Organo-bentonites with quaternary alkylammonium ions. Clay Miner. 26: 19-32. Fitch, A. 1990. Clay-modified electrodes : A review. Clays Clay Miner. 38: 391-400. Fitch, A., J. Du, H. Gan, and J.W. Stucki. 1995. Effect of clay charge on swelling: A clay-modified electrode study. Clays Clay Miner. 43: 607-614. Fitzgerald, W.F., and T.W. Clarkson. 1991. Mercury and monomethyl- mercury: present and future concerns. Environ. Health Perspect. 96: 159-166. Fu, X.C., X. Chen, Z. Guo, L.T. Kong, J. Wang, J.H. Liu, and X.J. Huang. 2010. Three-dimensional gold micro-/nanopore arrays containing 2-mercaptobenzothiazole molecular adapters allow sensitive and selective stripping voltammetric determination of trace mercury(II). Electrochim. Acta. 56: 463-469. Ghosh, P.K., and A.J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105: 5691-5693. Giacomino, A., O. Abollino, M. Malandrino, and E. Mentasti. 2008. Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode. Talanta. 75: 266-273. Gilmour, J.T. 1977. Effection of some negative ions on mercury adsorption by soils. Envir. Lett. 2: 143-147. Gilsanz, C., R. Gusmao, E. Chekmeneva, N. Serrano, J.M. Diaz-Cruz, C. Arino, and M. Esteban. 2011. Electroanalysis of the binding and adsorption of Hg2+ with seleno aminoacids by differential pulse and elimination voltammetry at the Au-disk electrode. Electrochim. Acta. 56: 5988-5992. Gochfeld, M. 2003. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol. Environ. Saf. 56: 174-179. Gong, J., T. Zhou, D. Song, L. Zhang, and X. Hu. 2010. Stripping voltammetric detection of mercury(II) based on a bimetallic Au−Pt inorganic−organic hybrid nanocomposite modified glassy carbon electrode. Anal. Chem. 82: 567-573. Greenwood, M.R., and R. Von Burg. 1984. Chapter II, 18. In E. Merian (ed.) Metalle der Umwelt. Verlag Chemie, Weinheim. Groisman, L., C. Rav-Acha, Z. Gerstl, and U. Mingelgrin. 2004. Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain organoclays. Appl. Clay Sci. 24: 159-166. Hatch, W.R., and W.L. Ott. 1968. Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal. Chem. 40: 2085-2087. Hausler, W., and H. Stanjek. 1988. A refined procedure for the determination of the layer charge with alkylammonium ions. Clay Miner. 23: 233-337. He, B., and K. Char. 2005. Conformational behavior of dodecyldiamine inside the confined space of montmorillonites. Langmuir. 21: 8471-8477. Henriques, A., R. Ferm, and J.E. Larsson. 1973. Kvicksilver-anvandning, kontroll och miljoeffekter. National Swedish Environment Protection Board. Report SNV PM 421. Heil, D., A. Hanson , and Z. Samani. 1996. The competitivebinding of lead by EDTA in soils and implications for heap leaching remediation. Radioact. Waste Manage. Environ. Restor. 20: 111-127. Herrero, E., and H.D. Abrunna. 1997. Underpotential deposition of mercury on Au(111): electrochemical studies and comparison with structural investigations. Langmuir. 13: 4446-4453. Hirst, D. 1962. The geochemistry of modern sediments from the gulf of Paria. Geochim. Cosmochim. Acta. 26: 1147-1187. Huang, J.W., J.J. Chen, W.R. Berti, and S.D. Cunningham. 1997. Phytoremediation of lead-contaminated soils: role of synthetic chelating in lead phytoextraction. Environ. Sci. Technol. 31: 800-805. Huang, W., and S. Zhang. 2002. Determination of mercury at a dithizone- modified glassy carbon electrode by anodic stripping voltammetry. Anal. Sci. 18: 187-189. Iskandar, I.K. 1997. Proceedings of extended abstracts from the fourth international conference on the biogeochemistry of trace elements. Army Cold Regions Research and Engineering Laboratory. 109-110. Janegitz, B.C., L.C.S. Figueiredo-Filho, L.H. Marcolino-Junior, S.P.N. Souza, E.R. Pereira-Filho, and O. Fatibello-Filho. 2011. Development of a carbon nanotubes paste electrode modified with crosslinked chitosan for cadmium(II) and mercury(II) determination. J. Electroanal. Chem. 660: 209-216. Javanbakht, M., H. Khoshsafar, M.R. Ganjali, A. Badiei, P. Norouzi, and A. Hasheminasab. 2009. Determination of nanomolar mercury(II) concentration by anodic-stripping voltammetry at a carbon paste electrode modified with functionalized nanoporous silica gel. Curr. Anal. Chem. 5: 35-41. Jaynes, W.F., and S.A. Boyd. 1991. Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Sci. Soc. Am. J. 55: 43-48. Jaynes, W.F., and J.M. Bigham. 1987. Charge reduction, octahedral charge, and lithium tretention in heated, Li-saturated smectites. Clays Clay Miner. 35: 440-448. Jelinek, L., K. Inoue, and T. Miyajima. 1999. The effect of humic substances on Pb(II) adsorption on vermiculite. Chem. Lett. 1: 65-66. Jing, Y.D., Z.L. He, and X.E. Yang. 2007. Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere. 69: 1662-1669. Jitaru, P., and F. Adams. 2004. Toxicity, sources and biogeochemical cycle of mercury. J. Phys. IV France. 121: 185-193. Joensuu, O.I. 1971. Fossil fuels as a source of mercury pollution. Science. 172: 1027-1028. Johll, M.E., D.G. Williams, and D.C. Johnson. 1997. Activated pulsed amperometric detection of cysteine at platinum electrodes in acidic media. Electroanalysis. 9: 1397-1402. Joo, P. 1990. Electrochemistry of dye- and surfactant-incorporated montmorillonite-modified electrodes. Colloids Surf. 49: 29-39. Joo, P. 1998. Interfacial electrochemistry of colloid-modified electrodes. Colloids Surf., A: Physicochem. Eng. Aspects. 141: 337-346. Joo, P., and A. Fitch. 1996. Ionic and molecular transport in hydrophobized montmorillonite films: an electrochemical survey. Environ. Sci. Technol. 30: 2681-2686. Joo, P., A. Fitch, and S.H. Park. 1997. Transport in hydrophobized montmorillonite thin films. Environ. Sci. Technol. 31: 2186-2192. Jordan, J.W. 1949. Organophilic bentonites I. swelling in organic liquids. J. Phys. Colloid Chem. 53: 294-306. Jordan, J.W. B.J. Hook, and C.M. Finlayson. 1950. Organophilic bentonites II. organic liquid gels. J. Phys. Colloid Chem. 54: 1196-1208. Jordan, J.W. 1954. Organophilic bentonites III. inherent properties. Colloid. Polym. Sci. 137: 40-48. Kabata-Pendias, A., and H. Pendias. 1992. Trace elements in soils and plants. 2nd edition. CRC Press, London. 227-233. Khan, A.A., Inamuddin, and T. Akhtar. 2008. Organic-inorganic composite cation-exchanger: poly-o-toluidine Zr(IV) phosphate-based ion-selective membrane electrode for the potentiometric determination of mercury. Anal. Sci. 24: 881-887. Khenifi, A., Z. Bouberka, F. Sekrane, M. Kameche, and Z. Derriche. 2007. Adsorption study of an industrial dye by an organic clay. Adsorption. 13: 149-158. Kim, C.S., J. J. Rytuba, and G.E. Brown Jr. 2004. EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides II. effects of chloride and sulfate. J Colloid Interface Sci. 270: 9-20. King, R.D., D.G. Nocera, and T.J. Pinnavaia. 1987. On the nature of electroactive sites in clay-modified electrodes. J. Electroanal. Chem. 236: 43-53. Kinniburgh, D.G., M.L. Jackson, and J.K. Syers. 1976. Adsorption of alkaline earth, transtion and heavy metals cations by hydrous oxide gels of iron and aluminum. Soil Sci. 40: 796-799. Klapyta, Z., T. Fujita, and N. Iyi. 2001. Adsorption of dodecyl- and octadecyltrimethylammonium ions on a smectite and synthetic micas. Appl. Clay Sci. 19: 5-10. Klapyta, Z., A. Gawel, T. Fujita, and N. Iyi. 2003. Structural heterogeneity of alkylammonium-exchanged, synthetic fluorotetrasilisic mica. Clay Miner. 38: 151-160. Koh, S.M., and J.B. Dixon. 2001. Preparation and application of organo- minerals as sorbents of phenol, benzene and toluene. Appl. Clay Sci. 18: 111-122. Kowalska, M., H. Guler, and D.L. Cocke. 1994. Interactions of clay minerals with organic pollutants. Sci. Total Environ. 141: 223-240. Krishna, B.S., D.S.R. Murty, and B.S. Jai Prakash. 2000. Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay. J. Colloid Interface Sci. 229: 230-236. Krishna, B.S., D.S.R. Murty, and B.S. Jai Prakash. 2001. Surfactant-modified clay as adsorbent for chromate. Appl. Clay Sci. 20: 65-71. Krishnamurti, G.S.R., P.M. Huang, and K.C.J. Van Rees. 1997. Kinetics of cadmium release from soils as influenced by organic: implication in cadmium availability. J. Environ. Qual. 26: 271-277. Lagaly, G., M.F. Gonzalez, and A. Weiss. 1976. Problems in layer charge determination of montmorillonite. Clay Miner. 11: 173-187. Lagaly, G. 1979. The “layer charge” of regular interstratified 2:1 clay minerals. Clays Clay Miner. 27: 1-10. Lagaly, G. 1981. Characterization of clays by organic compounds. Clay Miner. 16: 1-21. Lagaly, G. 1982. Layer charge heterogeneity in vermiculites. Clays Clay Miner. 30: 215-222. Lagaly, G. 1984. Clay-organic interactions. Phil. Trans. R. Soc. Lond. A. 311: 315-332. Lagaly, G. 1986. Interaction of alkylamines with different types of layered compounds. Solid State Ionics. 22: 43-51. Lagaly, G., M. Ogawa, and I. Dekany. 2006. Clay mineral organic interactions. in: F. Bergaya, B.K.G. Theng, G. Lagaly (Eds.), Handbook of Clay Science, Developments in Clay Science, Elsevier, Amsterdam 1: 309-377. Lagaly, G., and A. Weiss. 1969. Determination of the layer charge in mica-type layer silicates. Proceedings of the International Clay Conference. 61-80. Laird, D.A., A.D. Scott, and T.E. Fenton. 1989. Evaluation of the alkylammonium method of determining layer charge. Clays Clay Miner. 37: 41-46. Lee, J., R.D. Reeves, R.R. Brooks, and T. Jaffre. 1997. Isolation andidentification of a citrate-complex of nickel from nickel- accumulatingplants. Phytochemistry. 16: 1502-1505. Lee, J.J., J. Choi, and J.W. Park. 2002. Simultaneous sorption of lead and chlorobenzene by organobentonite. Chemosphere. 49: 1309-1315. Lee, S.Y., S.J. Kim, S.Y. Chung, and C.H. Jeong. 2004. Sorption of hydrophobic organic compounds onto organoclays. Chemosphere. 55: 781-785. Letaief, S., P. Aranda, and E. Ruiz-Hitzky. 2005. Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl. Clay Sci. 28: 183-198. Li, Y., and H. Ishida. 2002. A differential scanning calorimetry study of the assembly of hexadecylamine molecules in the nanoscale confined space of silicate galleries. 2002. Chem. Mater. 14: 1398-1404. Li, Z., and R.S. Bowman. 2001. Retention of inorganic oxyanions by organo-kaolinite. Water Res. 35: 3771-3776. Lin, S.H., and R.S. Juang. 2002. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater. 92: 315-326. Lindquist, O., A. Jernelov, K. Johansson, and H. Rodhe. 1984. Mercury in the swedish environment. National Swedish Environment Protection. Report SNV PM 1816. Lothenbach, B., G. Furrer, and R. Schulin. 1997. Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds. Environ. Sci. Technol. 31: 1452-1462. Mac Naughton, M.G., and R.O. James. 1973. Adsorption of aqueous mercury (II) complexes at the oxide/water interface. J. Colloid Interf. Sci. 47: 431-440. Macha, S.M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta. 128: 1-18. Majdan, M., B. Tarasiuk, A. Gladysz-Plaska, and S. Pikus. 2007. Adsorption of organic pollutants on organo-clays. Przem. Chem. 86: 126-131. Manceau, A., B. Lanson, V.A. Drits, D. Chateigner, W.P. Gates, J. Wu, D. Huo, and J.W. Stucki. 2000. Oxidation-reduction mechanism of iron in dioctahedral smectites: I. crystal chemistry of oxidized reference nontronites. Am. Mineral. 85: 133-152. Merinska, D., Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova, and J. Simonik. 2002. Polymer/clay nanocomposites on MMT/ODTA intercalates. Comp. Interf. 9: 529-540. Mermut, A. R., and G. Lagaly. 2001. Baseline studies of the clay minerals society source clays: layer charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Miner. 49: 393-397. Miao, P., L. Liu, Y. Li, and G. Li. 2009. A novel electrochemical method to detect mercury (II) ions. Electrochem. Commun. 11: 1904-1907. Morita, H., M. Sugimoto, and S. Shimomura. 1990. Selective determination of inorganic and total mercury by cold vapor atomic fluorescence spectrometry coupled with flow injection analysis. Anal. Sci. 6: 91-95. Mortland, M.M. 1970. Clay-organic complexes and interactions. Advances in Agronomy. 22: 75-117. Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27: 159-177. Murray, R.W., 1992. Introduction to the chemistry of molecularly designed electrode surfaces. In “Molecular Design of Electrode Surfaces, Techniques of Chemistry, vol. 22”, ed. R.W. Muray, pp. 1-48. John Wiley & Sons. Inc. New York Newman, A.C.D., and G. Brown. 1987. The chemical constitution of clays. In “Chemistry of Clays and Clay Minerals”, ed. A. C. D. Newman, pp. 1-128. John Wiley & Sons, Inc. New York. Ngameni, E., I.K. Tonle, J.T. Apohkeng, R.G.B. Bouwe, A.T. Jieumboue, and A. Walcarius. 2006. Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanalysis 18: 2243-2500. Nriagu, J.O. 1979. Chapter 2. In J.O. Nriagu (ed.) The biogeochemistry of mercury in the environment. Elsevier. Amsterdam. Oyanedel-Craver, V.A., M. Fuller, and J.A. Smith. 2007. Simultaneous sorption of benzene and heavy metals onto two organoclays. J. Colloid Interface Sci. 309: 485-492. Ozcan, A.S., B. Erdem, and A. Ozcan. 2004. Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J. Colloid Interface Sci. 280: 44-54. Ozcan, A., C. Omeroglu, Y. Erdogan, and A.S. Ozcan. 2007. Modification of bentonite with a cationic surfactant: an adsorption study of textile dye Reactive Blue 19. J. Hazard. Mater. 140: 173-179. Osman, M.A., M. Ploetze, and P. Skrabal. 2004. Structure and properties of alkylammonium monolayers self-assembled on montmorillonite platelets. J. Phys. Chem. B. 108: 2580-2588. Pascale, B.G., M. Alnot, J.P. Lickes, J.J. Ehrhardt, and P. Behra. 1999. Modeling the adsorption of mercury(II) on (hydr)oxides II:α-FeOOH (goethite) and amorphous silica. J. Colloid Interf. Sci. 215: 313-322. Petridis, D., P. Falaras, and T. J. Pinnavaia. 1992. Self-assembly of ion-paired electron-transfer centers in a clay-modified electrode. Inorg. Chem. 31: 3530-3533. Plante, A.F., J.M. Fernandez, and J. Leifeld. 2009. Application of thermal analysis techniques in soil science. Geoderma. 153: 1-10. Ponizovskii, A.A., and E.V. Mironenko. 2001. Mechanisms of lead(II) sorption in soils. Euras. Soil Sci. 34: 371–381. Qin, F., X.Q. Shan, and B. Wei. 2004. Effect of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb fromsoils. Chemosphere. 57: 253-263. Rizea, M.C., A.F. Danet, and S. Kalinowski. 2007. Determination of mercury(II) after its preconcentration on a carbon paste electrode modified with Cadion A. Romania. 58: 266-269. Roa-Morales, G., M.T. Ramirez-Silva, R.L. Gonzalez, L. Galicia, and M. Romero-Romo. 2005. Electrochemical characterization and determination of mercury using carbon paste electrodes modified with cyclodextrins. Electroanalysis. 17: 694-700. Sagberg, P., and W. Lund. 1982. Trace metal analysis by anodic-stripping voltammetry effect of surface-active substances. Talanta. 29: 457-460. Salaun, P., and C.M.G. van den Berg. 2006. Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal. Chem. 78: 5052-5060. Sanchez, A., S. Morante-Zarcero, D. Perez-Quintanilla, I. Sierra, and I.D. Hierro. 2012. Determination of Hg(II) in natural waters using a carbon paste electrode modified with hybrid mesostructured silica nanoparticles. Sens. Actuators B. 163: 38-43. Sarkar, B., Y. Xi, M. Megharaj, G.S.R. Krishnamurti, and R. Naidu. 2010. Synthesis and characterisation of novel organopalygorskites for removal of p-nitrophenol from aqueous solution: Isothermal studies. J. Colloid Interface Sci. 350: 295-304. Sarkar, D., M.E. Essington, and K.C. Misra. 2000. Adsorption of mercury (II) by kaolinite. Soil Sci. Soc. Am. J. 64: 1968-1975. Schwab, A.P., and M.K. Banks. 1993. The impacts of vegetation on the leaching of heavys from mine tailings: solubilization of zinc by organic acids. In: Proc. AWMA, Denver, CO, Paper 93-WA-89.06. Sheng, G., C.T. Johnston, B.J. Teppen, and S.A. Boyd. 2001. Potential contributions of smectite clays and organic matter to pesticide retention in soils. J. Agric. Food Chem. 49: 2899-2907. Sheng, G., S. Xu, and S.A. Boyd. 1996. Cosorption of organic contaminants from water by hexadecyltrimethylammonium-exchanged clays. Water Res. 30: 1483-1489. Solomon, D.H., B.C. Loft, and J.D. Swift. 1968. Reactions catalyzed by minerals. IV. The mechanism of the benzidine blue reaction of silicate minerals. Clay Miner. 7: 389-397. Steinnes, E. 1990. Mercury. In B.J. Alloway (ed.) Heavy metals in soils. Blackie, Glasgow. Stetter, J.R., W.R. Penrose, and S. Yao. 2003. Sensors, chemical sensors, electrochemical sensors, and ECS. J. Electrochem. Soc. 150: 511-516. Strode, A.S., L. Jaegle, N.E. Selin, D.J. Jacob, R.J. Park, R.M. Yantosca, R.P. Mason, and Franz. 2007. Air-sea exchange in the global mercury cycle. Global Biogeochemical Cycles 21: GB1017. Tamer, U., T. Oymak, and N. Ertaş. 2007. Voltammetric determination of mercury(II) at poly(3-hexylthiophene) film electrode. effect of halide ions. Electroanalysis. 19: 2565-2570. Tamura, K., and H. Nakazawa. 1996. Intercalation of n-alkyltrimethylammonium into swelling fluoro-mica. Clays Clay Miner. 44: 501-505. Tchinda, A.J., E. Ngameni, and A. Walcarius. 2007. Thiol-functionalized porous clay heterostructures (PCHs) deposited as thin films on carbon electrode: Towards mercury(II) sensing. Sens. Actuators B. 121: 113-123. Theng, B.K.G. 1971. Mechanisms of formation of colored clay-organic complexes. A review. Clays Clay Miner. 19: 383-390. Tonle, I.K., E. Ngameni, and A. Walcarius. 2005. Preconcentration and voltammetric analysis of mercury(II) at a carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sens. Actuators B. 110: 195-203. Vaia, R.A., R.K. Teukolsky, and E.P. Giannelis. 1994. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem. Mater. 6: 1017-1022. Vali, H., R. Hesse, and H. Kodama. 1992. Arrangement of n-alkylammon- ium ions in phlogopite and vermiculite: an XRD and TEM study. Clays Clay miner. 40: 240-245. Van Olphen, H., and J.J. Fripiat. 1979. Data handbook for clay minerals and other non-metallic minerals. Oxford, England: Pergamon Press. Vougaris, D., and D. Petridis. 2002. Emulsifying effect of dimethyldioctadecylammonium-hectorita in polystyrene/poly(ethyl methacrylate) blends. Polymer. 43: 2213-2218. Wang, F., X. Wei, C. Wang, S. Zhang, and B. Ye. 2010. Langmuir-Blodgett film of p-tert-butylthiacalix[4]arene modified glassy carbon electrode as voltammetric sensor for the determination of Hg(II). Talanta. 80: 1198-1204. Wang, J.S., P.M. Huang, U.T. Hammer, and W.K. Liaw. 1985. Influence of selected cation and anion species on the adsorption of mercury(II) by montmorillonite. Appl. Clay Sci. 1: 125-132. Wang, K.H., M.H. Choi, C.M. Koo, C.M. Choi, and I.J. Chung. 2001. Synthesis and characterization of maleated polyethylene/clay nano-composites. Polymer. 42: 9819-9826. Wasay, S.A., S.F. Barringto, and S.Tokunaga. 1998. Remediation of soils pollutedby heavymetals using salts of organicacids and chelating agents. Environ. Technol. 19: 369-380. Widmann, A., and C.M.G. van den Berg. 2005. Mercury detection in seawater using a mercaptoacetic acid modified gold microwire electrode. Electroanalysis. 17: 825-831. Wu, J., L. Li, B. Shen, G. Cheng, P. He, and Y. Fang. 2010. Polythymine oligonucleotide-modified gold electrode for voltammetric determination of mercury(II) in aqueous solution. Anal. Chem. 22: 371-481. Xi, Y.F., R.L. Frost, H.P. He, T. Kloprogge, and T. Bostrom. 2005. Modification of wyoming montmorillonite surfaces using a cationic surfactant. Langmuir. 21: 8675-8680. Yi, H. 2003. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode. Anal. Bioanal. Chem. 377: 770-774. Yin, Y. 1996. Adsorption of mercury(II) by soil:effects of pH, chloride, and organic matter. Environ. Qual. 25: 837-844. Zachara, J.M., C.C. Ainsworth, C.E. Cowan, and C.T. Resch. 1989. Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 53: 418-428. Zejli, H., P. Sharrock, J.L.H.H. de Cisneros, I. Naranjo-Rodriguez, and K.R. Temsamani. 2005. Voltammetric determination of trace mercury at a sonogel-carbon electrode modified with poly-3-methylthiophene. Talanta. 68: 79-85. Zen, J.M., A.S. Kumar, and D.M. Tsai. 2003. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis. 15: 1073-1087. Zhu, Z., Y. Su, J. Li, D. Li, J. Zhang, S. Song, G. Li, and C. Fan. 2009. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 81: 7660-7666. Zohra, B., K. Aicha, S. Fatima, B. Nourredine, and D. Zoubir. 2008. Adsorption of Direct Red 2 on bentonite modified by cetyltrimethyl- ammonium bromide. Chem. Eng. J. 136: 295-305.
摘要: 
汞的高毒性和累積性對人體與土壤環境會造成很大的威脅,土壤汞的檢測與監控是相當重要的課題。本論文研究主要探討不同烷銨插層鍍金修飾電極對汞離子的偵測,並以汞離子添加到土壤抽出液中找出最佳試驗參數與最佳烷銨插層鍍金修飾電極,期望能發展出可快速檢測土壤中汞離子的電化學方法。試驗結果顯示,烷銨插層多鐵蒙特石鍍金修飾電極搭配微分脈衝伏安法對200 ~ 1000 ppb Hg2+ 有較好的偵測效果,且其不易受鉛存在所影響。此外,利用相同的電極搭配方波伏安法對20 ~ 250 ppb Hg2+ 有較佳的偵測效果,其方波最佳參數為階梯電位:8 mV、頻率:20 Hz;預濃縮最佳電位為–0.8 V、6分鐘。十四碳烷銨插層多鐵蒙特石鍍金修飾電極對秀水系土壤抽出液中的汞離子有較佳的電化學分析結果,其偵測範圍為20 ~ 100 ppb (R2 = 0.9726)。以中興湖水和地下水中利用100 ppb Hg2+ 的標準添加可獲得回收率分別為80.16 ~ 104.51 % 和89.11 ~ 109.78 %。以此電極偵測秀水系土壤抽出液中100和1000 ppb汞離子可得到良好的穩定性與再現性。以台灣農業耕地土壤為真實樣品,利用十四碳烷銨插層多鐵蒙特石鍍金修飾電極與汞分析儀作分析比較,其有R2 = 0.4500的相關性,由於汞分析儀是測定土壤總汞量,故與電化學分析方法測定間有所差別,土壤汞離子與總汞量之間的比值範圍為14.33 ~ 273.14 %。以土壤總汞量和汞離子量之間所做的相對差異百分比得知,其之間的差異易受土壤鉻和鋅含量的影響,此也顯示土壤鉻、鋅含量增加會影響到電化學對土壤汞離子的分析。

High toxicity and accumulation of mercury has caused a great threat to human body and soil environment, and it is important task to determine and monitor soil mercury. The objective of this study was to find better determination of mercury ions using gold plated alkylammonium- intercalated clay modified electrode (Au_AICME), and hope to develop electrochemical methods for rapid detection of mercury ions in the soils. The results indicated that Au_AICME of ferruginous smectite (SWa-1) had good determination for 200 ~ 1000 ppb Hg2+ coupling with electroanalysis of differential-pulse voltammetry, and that for 20 ~ 250 ppb Hg2+ coupling with square-wave voltammetry. Eletroanalysis of Au_AICME (SWa-1) coupling with differential-pulse voltammetry was not affected by presence of Pb(II).The optimum parameters of square-wave voltammetry were 8 mV for step potential, 20 Hz for frequency,–0.8 V for deposition potential and 6 minutes for deposition time. Au_AICME of 14C_SWa-1 had excellent analysis for 20 ~ 100 ppb Hg2+ (R2 = 0.9726) in the extracted solution of Shiushui soil. Good recoveries of 100 ppb Hg2+ added in Chung Hsing lake and underground water were respectively 80.16 ~ 104.51 % and 89.11 ~ 109.78 %. Au_AICME of 14C_SWa-1 had good stability and repeatability for 100 and 1000 ppb Hg2+. The relationship between electroanalysis of Au_14C_SWa-1 electrode and mercury analyzer was R2 = 0.4500 for real samples of Taiwan agricultural soils. Analysis of mercury analyzer was different with Au_AICME due to total mercury for mercury analyzer and mercury ions for electroanalysis, so the ratio between mercury ions and total mercury was 14.33 to 273.14 % in agricultural soils. Relative difference percent of mercury ions and total mercury in soils indicated the difference of two analytic methods that was affected by the contents of chromium and zinc, and that also showed much amounts of soil chromium and zinc would affect the electroanalysis of mercury ions in agricultural soils.
URI: http://hdl.handle.net/11455/25610
其他識別: U0005-1807201220181500
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.