Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25614
標題: 利用POM催化零價金屬氧化水溶液中之三價砷
Catalytic oxidation of arsenite by zero-valent metals in the presence of polyoxometalate
作者: 吳政哲
Wu, Cheng-Che
關鍵字: 三價砷;Arsenite;零價金屬;氧化;POM;Zero-valent metals;Oxidation;Polyoxometalate
出版社: 土壤環境科學系所
引用: 李國欽、費文綺,1980,水稻田土壤含砷量與植株含砷量級生長情形相關關係之探討,植保會刊 22 : 101-112。 林鴻淇,土壤砷之問題:從土壤化學及植物營養學觀點之研究。台灣大學農學驗研究報告。1977。17:798-809。 陳君哲、李國欽,1991,田間土壤四種不同型態砷含量之調查及淋洗試驗,植保會刊 33:314-322。 劉政樺,2007,利用層狀雙氫氧化物移除水中的砷酸鹽,國立台灣大學農業化學系碩士論文。 謝文彬,2004,奈米級零價鐵結合過氧化氫與Fenton試劑處理含PAHs汙染土壤,國立中興大學土壤環境科學系碩士論文。 Alloway, B.J. 1995. Heavy metals in soil. New York : Halsted Press, pp.106-121. Baba, T., Watanabe,H., Ono, Y., 1983. Generation of acidic sites in metal salts of heteropoly acids. J. Phys. Chem. 87: 2406-2411. Blowes, D.W., C. J. Ptacek, and J. L. Jambor, 1997. In-Situ Remediation of Chromate Contaminated Groundwater Using Permeable Reactive Walls.” Environment. Sci.31(12) :3348–3357. Bokare, A.D., and W. Choi, 2009. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environment. Sci. 43: 7130-7135. Braman, R.S. and C.C. Foreback, 1973. Methylated Forms of Arsenic in the Environment. Sci. 148 : 1247-1249. Chen, S.L., S.R. Dzeng, and M.H. Yang. 1994. Arsenic species in groundwater of the blakfoot disease area, Taiwan. Environ. Sci. Technol. 28:877-881. Cullen , W.R., and K.J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89:713-764. Dutta, P., Pehkonen, S.O., Sharma, V., and Ray, V. 2005, Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals. Environ. Sci. Technol. 39, 1827-1834. Edwards, M. 1994. Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. J. Am. Water Works Assoc. 86:64-78. Gao, S., K.K. Tanji, and S. Goldberg. 1997. Session 1 : Potentially toxic trace elements in soils and sediments Paper 4 : Reactivity and transformation of arsenic. In Dudley, L.M., and J. Guitjen. (eds.) Agroecosystems : sources, control, and remediation of oxyanions symposium on sources, control, and remediation of oxyanions in agroecosystems, 19-22 June, 1994. Proc. Symp., Pacific Div., Am. Assoc. Adv. Sci. San Francisco. Ghimirea, K.N., K. Inoue, H Yamaguchi, and K. Makino, and T. Miyajima. 2003. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 37:4945-4953. Glezos, N., D. Velessiotis, G. Chaidogiannos, and P. Argitis. 2003. Transport properties of polyoxometalate containing polymeric materials. Synthetic metals. 138:267-269. Hatleild, B., C. Brailford, and D.E. Carter. 1996. Reaction of arsenic with heroglobin. J. Toxicol. Enivorn. Health. 47:145-157. Hiskia, A., A. Mylonas, and E. Papaconstantinou. 2001. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 30:62-69. Huang, P.M. 1980. Adsorption processes in soil. p. 47-59. In O. Hutzinger (ed.) Handbook of environmental chemistry. Springer-Verlag, Amsterdam. Huang, P.M. 1991. Kinetics of redox reactions on surfaces of Mn oxides and its impact on environmental quality. pp. 191-230. In D.L. Sparks and D.L. Suarez (ed.) Rate of chemical processes in soils. SSSA Special Pbul. 27. SSSA, Madison, WI. Ishinishi, N., Tsuchiya, M. Vahter, and B.A. Fowler. Arsenic. 1986. p. 43-83. In L. Friberg etal. (ed.) Handbook on the toxicology of metals, 2nd ed. Elservier Sci. Jeong, Y., M. Fan, S. Singh, C.L. Chuang, B. Saha, and J.H.ven Leeuwen. 2007. Evaluation of iron oxide and aluminum oxide as potential arseniv(V) adsorbents. Chem. Eng. Process. 46:1030-1039. Katsoyiannis, I.A., Ruettimann, T. and Hug, S.J. 2008. pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environ. Sci. Technol. 42: 7424–7430. Kim, S., H. Park, and W. Choi. 2004. Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW12O403- vs TiO2. J. Phys. Chem. B 108:6402-6411. Kondo, H., Y. Ishiguro, k. Ohno, M. Nagase,M. Toba, and T. Makoto. 1999. Naturally occurring arsenic in the groundwater in the southern region of Fukuoka Prefecture, Japan. Water Res. 33:1967-1972. Korte, N.E., and Q. Fernando, 1991. A review of arsenic(III) in groundwater. Crit Rev. Environ Con. 21:1-39. Kozhevnikov, I.V., 1987. Advances in catalysis by heteropolyacids. Russian Chem Rev. 56:811-825 Lee, J., J. Kim, and W. Choi. 2007. Oxidation on Zerovalent Iron Promoted by Polyoxometalate as an Electron Shuttle. Environ. Sci. Technol. 42:3335-3340. Lin, C.J., S.L. Wang, P.M. Huang, Y.M. Tzou, J.C. Liu, C.C. Chen, J.H. Chen, and C. Lin, 2009. Chromate reduction by zero-valent Al metals as catalyzed by polyoxometalate. Water Res. 43:5015-5022 Liu, Y., K. Murata, and M. Inaba. 2005. Liquid-phase oxidation of benzene to phenol by molecular oxygen over transition metal substituted polyoxometalate compounds. Catal Commu 6:679-683. Manning, B., M. Hunt, C. Amerhrin, and J. Yarmoff. 2002. Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. 36: 5455-5461. Melamed, R., J.J. Jurinak, and L.M. Dudley. 1995. Effect of adsorbed phosphate on transport of arsenate through an Oxisol. Soil Sci. Soc. Am. J. 59:1289-1294. Muradov, N., A.T. Raissi. 2006. Solar production of hydrogen using “self-assembled” polyoxometalate photocatalysts. J Solar Ener Engin. 128: 326-331. Ng, J.C., J. Wang and A. Shraim. 2003. A global health problem caused by arsenic from natural sources. Chemosphere 52: 1353-1359. O’Neill, P. 1995. Arsenic. In “Heavy Metals in Soil” (B. J. Alloway, Ed.). Blackie Academic & Professional, Glasgow. Parfitt, R.L. 1978. Anion adsorption by soils and soil materials, Adv. Agron. 30:1-50. Raven, K.P., A. Jain, and R.H. Loeppert. 1998. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 32:344-349. Powell, R. M., and R. W. Puls, 1997. Permeable reactive subsurface Bbarriers for interception and remediation of chlorinated hydrocarbon and chromium (VI) plumes in ground water. U.S. EPA Remedial Technology Fact Sheet. EPA/600/F-97/008 Sadiq, M. 1997. Arsenic chemistry in siols: An overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 93:117-136. Scherer, M. M., S. Richter, R. L. Valentine, and P. J. J. Alvarez. 2000. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Environ. Sci. Technol. 30(3): 364-411. Schwertmann U., U. Gasser, and H. Sticher. 1989. Chromium for iron substitution in synthetic goethites. Geochim Cosmochim Acta. 53: 1293-1297. Smedley, P.L., and D.G. Kinnburgh. 2002. A review of source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17:517-568 Troupis, A., A. Hiskia, and E. Papaconstantinou. 2001. Reduction and recovery of metals from aqueous solutions with polyoxometallates. The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 25:361-363. Violante, A., M. Ricciardella, S.D. Gaudio, and M. Pigna. 2006. Coprecipitation of arsenate with metal oxides : nature, mineralogy, and reactivity of aluminum precipitates. Environ. Sci. Technol. 40: 4961-4697. Wako, N., H.Koyatsu, Y. Komai, H. Shimokawara, Y. Sakurai, and H. Shiota. Microbial oxidation of arsenate and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine. Geomicrobiology J. 1988. 6:11-24. Yamauchi, H., and A.F. Bruce, 1994. Toxicity and metalbolism of inorganic and methylated arsenicals. In arsenic in the environment II. Human health and ecosystem effects (JO.Nriagu,ED). Wiley New York. Pp.35-43.
摘要: 
地下水或表面水體中的砷(As)對人體的不利影響已是全球關注的議題之一,尤其是毒性高的As(III),過去已有許多氧化或移除As(III)的方法,而其中又以Fenton反應最受到重視,其主要是利用Fe(Ⅱ)與過氧化氫在酸性條件下,產生具有強氧化能力的氫氧自由基(‧OH)來氧化As(Ⅲ)。此外,最近也有以零價鐵粉(ZVI)在酸性環境下做為Fenton反應的電子源,雖然在通氣下其亦具有不錯的氧化能力,但由於鐵粉較不穩定,故實際操作及應用上仍有其缺陷。本實驗擬藉由零價鋁片(ZVAl)做為最初電子來源,藉以營造較佳的氧化條件,因ZVAl具有比ZVI更高的氧化還原電位及在環境中較穩定等優點,而前人研究亦證實,ZVAl於低pH及通氣的環境下也可進行Fenton-like反應產生OH radical,故此系統應也具氧化As(III)之能力,因此,本研究除了以ZVAl取代ZVI作為H2O2 (Fenton反應之前趨物)來源,瞭解ZVAl對As(Ⅲ)的氧化外,亦將嘗試添加Fe(Ⅱ)來增進Fenton反應之效率,並促進As(Ⅲ)的氧化。然而,與ZVI一樣,ZVAl表面常含有一層金屬氧化層而減緩甚或抑制其反應速率,故一種聚合金屬鹽類Polyoxometalates (POM, 其為極強的Bronsted 酸)亦將被利用於ZVAl系統中,來移除ZVAl表面氧化層並促進ZVAl系統中之電子轉移效率,並進而增強此系統對As(Ⅲ)的氧化,此外,亦將探討POM回收再利用之可行性,及如何利用生活中常見之鋁罐代替ZVAl進行As(III)之氧化移除。
結果顯示,在無POM系統中,未經6 M HCl清洗表面之ZVAl/O2系統在180 min反應時間內均無法將As(Ⅲ)氧化,而ZVAl/Fe(Ⅱ)/ O2系統在pH 1.0及2.0分別於90及195 min內即可氧化80μM As(Ⅲ)。當加入POM後,ZVAl/O2系統在180 min內可將20μM As(Ⅲ)氧化,而ZVAl/Fe(Ⅱ)/ O2系統在pH 1.0及2.0分別於75及120 min則可將80μM As(Ⅲ)氧化,代表POM可促進ZVAl表面的氧化層溶解並提升電子轉移之效率。當As(Ⅲ)完全氧化後,將各反應之溶液pH值提升至6.0,Fe/Al會發生沉澱、吸附並同時移除溶液中的As(Ⅴ),然而,於含POM系統下,POM會因為pH的上升而解離為不同型態,且會與As(Ⅴ)競爭Fe/Al氧/氫氧化物的吸附位置,故無法完全移除As,此為將來要利用POM於ZVAl系統來處理As時要解決的一項缺點。酸化於pH 6解離之POM後,因部分POM則會以催化能力略低之型態如[PW11O39]7-存在,故以回收之POM來進行ZVAl系統催化氧化As(Ⅲ)的能力會略為下降。市面回收的鋁罐,經簡單的處理後進行80μM As(III)的氧化,發現其於通氣的環境下在30 min內可氧化72% 的As(III),當加入Fe(Ⅱ)後,同濃度的As(Ⅲ)可於30 min內完全氧化,此證實鋁罐中的Al具有短時間內氧化As(III)的能力,故其或許將來可應用於未開發國家進行飲用水中As氧化移除的一個簡便的技術。

Arsenic has received much scientific concerns because it is toxic and commonly found in many water bodies, which may serve as drinking or irrigation water. Inorganic forms of arsenic, including As(III) and As(V), are carcinogenic, and they are considered more toxic than organic arsenic. Thus, the developments of some treatment technologies, such as Fenton or Fenton-like reactions, in the elimination of inorganic As from waters are desperate for decreasing its hazard to ecosystems. Zero-valent iron (ZVI) can serve as a precursor to initiate the Fenton reactions upon its oxidation under an aerobic environment. Fenton reaction induced by ZVI would produce strong oxidants for converting As(III) to As(V), which is then adsorbed or co-precipitated with the Fenton products of iron-hydroxides upon pH adjustments. In the current study, zero-valent aluminum (ZVAl) instead of ZVI were used to provide a better efficiency for As(III) oxidation because ZVAl/O2 system can induce a Fenton-like reaction and ZVAl exhibits a higher reduction potential than that of ZVI. Polyoxometalets (POM) was applied to accelerate As conversion in the ZVAl/O2 system because it can serve as a bronsted acid and an electron shuttle for removing oxide layers on ZVAl and promoting electron transfer among the reactants, respectively. Results showed that no discernible changes in As(III) concentration were observed when As(III) was reacted with ZVAl for 180 min under an aerobic solution even at pH 1. However, with the addition of 1 mg/L Fe(II) or 0.1 mM POM (check the validity of the values), 80 mM As(III) would be rapidly oxidized by ZVAl at pH ≦ 2 because a Fenton-like and catalytic reaction were promoted by Fe(II) and POM, respectively, on the ZVAl surfaces. Upon As(Ⅲ) oxidation, the solutions containing As(Ⅴ), Fe(Ⅲ), Al(Ⅲ) or POM was adjusted to pH 6.0 to co-precipitate As(V), Fe(III), and Al(III). In the meantime, POM was decomposed to low molecular weight anionic cluster such as [PW11O39]7-. Thus, the decomposed form of POM can be separated from the solid phases and be recycled after proceeding an acidification process for further use. Aluminum can could substitute ZVAl as a cheap electron donor for promoting As(Ⅲ) oxidation. It was found that 72% of added As(III) (ca. 80 mM) would be oxidized by ZVAl/O2 system within 120 min at pH 1.0, and 80 mM As(III) could be completely oxidized by ZVAl/Fe(Ⅱ)/O2 system within 30 min with the same experimental conditions.
URI: http://hdl.handle.net/11455/25614
其他識別: U0005-0608201209594600
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.