Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorChiu-Chung Youngen_US
dc.contributor.authorNakayan, Phaniten_US
dc.identifier.citationAdesemoye, A.O., and J.W. Kloepper. 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol. Biotechnol. 85:1–12. Agamy, R., M. Hashem, and S. Alamri. 2013. Effect of soil amendment with yeasts as bio-fertilizers on the growth and productivity of sugar beet. Afr. J. Agric. Res. 8:46‒56. Aggarwal, M., and A.K. Mondal. 2009. Debaryomyces hansenii: an osmotolerant and halotolerant yeast. p. 65‒84. In T. Satyanarayana and G. Kurze (ed.) Yeats Biotechnology: Diversity and Applications. Springer Science. New Delhi. Al-Falih, A.M., and M. Wainwright. 1995a. Nitrification, S-oxidation and P-solubilization by the soil yeast Williopsis californica and by Saccharomyces cerevisiae. Mycol. Res. 99:200–204. Al-Falih, A.M. 2005. Nitrogen transformation in Vitro by some soil yeasts. Saudi J. Bio Sci. 13:135–140. Ali, S., A.R. Khan, G. Mairaj, M. Arif, M. Fida, and S. Bibi. 2008. Assessment of different crop nutrient management practices for yield improvement. Aust. J. Crop Sci. 2:150‒157. Al-khaliel, A.S. 2010. Effects of arbuscular mycorrhization in sterile and non-sterile soils. Trop. Life Sci. Res. 21:55–70. Alonso, M., L. Kleiner, and E. Ortega. 2008. Spores of the mycorrizal fungus Glomus mosseae host yeast that solubilize phosphate and accumulate polyphosphates. Mycorrhiza 18:97‒204. Altomare, C., and I. Tringovska. 2013. Beneficial soil microorganisms, an ecological alternative for soil fertility management. p. 161‒214. In E. Lichtfouse (ed.) Genetics, biofuels and local farming systems, sustainable agriculture reviews. Springer. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basiclocal alignment search tool. J. Mol. Biol. 215:403–410. Ames, R.N., C.P.P. Reid, and E.R. Ingham. 1984. Rhizosphere bacterial population responses to root colonization by a vesicular-arbuscular mycorrhizal fungus. New Phytol. 96:555‒563. Amprayn, K.-o., M.T. Rose, M. Kecskes, L. Pereg, H.T. Nguyen, and I.R. Kennedy. 2012. Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl. Soil Ecol. 61:295‒299. Araujo, A.S.F., and R.T.R. Monteiro. 2005. Plant bioassays to assess toxicity of textile sludge compost. Sci. Agric. (Piracicaba, Braz.) 62:286‒290. Arroyo-Lopez, F.N., V. Romero-Gil, J. Bautista-Gallego, F. Rodriguez-Gomez, R. Jimenez-Diaz, P. Garcia-Garcia, A. Querol, and A. Garrido-Fernandez. 2012. Yeasts in table olive processing: Desirable or spoilage microorganisms? : a review. Int. J. Food Microbiol. 160:42–49. Atkin, C., J. Neilands, and H. Phaff. 1970. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporodiobolus, and Sporobolomyces and a new alanin-containing ferrichrome from Criptcoccus melibiosum. J. Bacteriol. 103:722–733. Azcon-Aguilar, C., and J.M. Barea. 1992. Interactions between mycorrhizal fungi and other rhizosphere microorganisms. p.163‒198. In M.F. Allen (ed.) Mycorrhizal functioning: an integrative plant-fungi process. Chapman & Hall, London. Badri, D.V., and J.M. Vivanco. 2009. Regulation and function of root exudates. Plant Cell Environ. 32:666–681. Balasubramanian, M.K., E. Bi, and M. Glotzer. 2004. Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cell. Curr. Biol. 14:R806–18. Balser, T.C., D. Wixon, L.K. Moritz, and L. Lipps. 2010. The microbiology of natural soils. p. 27. In G.R. Dixon and E.L. Tilston (ed.) Soil microbiology and sustainable crop production. Springer, London. Banik, S., and B.K. Dey. 1982. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant Soil 69:353–364. Bardgett, R.D., and B.S. Griffiths. 1997. Ecology and biology of soil protozoa, nematodes, and microarthropods. p. 129–159. In J.D. Van Elsas et al. (ed.) Modern Soil Microbiology. Marcell Dekker Inc. New York. Bautista-Rosales, P.U., M. Calderon-Santoyo, R. Servin-Villegas, N.A. Ochoa-Alvarez, and J.A. Ragazzo-Sanchez. 2013. Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biol. Control 65:293–301. Ben-Dor, E., and A. Banin. 1989. Determination of organic matter content in arid-zone soils using a simple loss-on-ignition method. Commun. Soil Sci. Plant Anal. 20:1675–1695. Berendsen, R.L., C.M.J. Pieterse, and P.A.H.M. Bakker. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–486. Berg, G. 2009. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84:11‒18. Bester, R. 2005. Growth and survival of Sacchromyces cerevisiae in soil. Thesis. University of Stellenbosch. Bevilacqua, A., F.P. Casanova, E. Arace, S. Augello, R. Carfagna, A. Cedola, S.D. Carri, F. De Stefano, G. Di Maggio, V. Marinelli, A. Mazzeo, A. Racioppo, M.R. Corbo, and M. Sinigaglia. 2012. A case-study on the selection of promising functional starter strains from grape yeasts: a report by student of food science and technology degree, University of Foggia (Southern Italy). J. Food Res. 1:44–54. Bisaria, V.S., and T.K Ghose. 1981. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products: a review. Enzyme Microb. Technol. 3:90–104. Blanke, V., C. Renker, M. Wagner, K. Fullner, M. Held, A.J. Kuhn, and F. Buscot. 2005. Nitrogen supply affects arbuscular mycorhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol. 166:981–992. Blanke, V., M. Wagner, C. Renker, H. Lippert, M. Michulitz, A.J. Kuhn, and F. Buscot. 2011. Arbuscular mycorrhizas in phosphate-polluted soil:interrelations between root colonization and nitrogen. Plant Soil 343:379–392. Boby, V. U., A.N. Balakrishna, and D.J. Bagyarai. 2007. Effect of combined of an AM fungus with soil yeasts on growth and nutrition of cowpea in sterilized soil. World J. Agric. Sci. 3:423–429. Boby, V.U., A.N. Balakrishna, and D.J. Bagyaraj. 2008. Interaction between Glomus mosseae and soil yeasts on growth and nutrient of cowpea. Microbiol. Res. 163:693–700. Bonfante, P., and I.A Anca. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63:363–83. Botha, A. 2006. Yeasts in soil. p. 221–240. In G. Peter and C. Rosa (ed.) Handbook biodiversity and ecophysiology of yeasts. Springer-Verlag, Berlin. Botha, A. 2011. The importance and ecology of yeasts in soil: a review. Soil Biol. Biochem. 43:1–8. Botha, A. 2011. The intimate relationship between man and yeast: it’s complicated. Inaugural lecture delivered on 6 June 2011. Stellenbosch University Language Centre. The Republic of South Africa. 20 p. Bura, R., A. Vajzovic, and S.L. Doty. 2012. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol. J. Ind. Microbiol. Biotechnol. 39:1003‒1011. Butinar, L., T. Strmole, and N. Gunde-Cimerman. 2011. Relative Incidence of ascomycetous yeasts in Arctic Coastal environments. Microb. Ecol. 61:832–843. Byzov, B.A., A.V. Kurakov, E.B. Tretyakova, V.N. Thanh, N.D.T. Luu, and Y.M. Rabinovich. 1998. Principles of the digestion of microorganisms in the gut of soil millipedes: specificity and possible mechanisms. Appl. Soil Ecol. 9:145–151. Calvente, V., D. Benuzzi, and M.I.S. de Tosetti. 1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. Int. Biodeterior. Biodegrad. 43:167–172. Cardida, L.F., and J.A. Ocampo. 1985. Estuido de pa possible utilizacion de micorrizas. VA como fertilizantes biologicos en dos suelos. An. Edatol. Agrobiol. 44:453–462. Carvalhais, L.C., P.G. Dennis, D. Fedoseyenko, M.R. Hajirezaei, R. Borriss, and N. von Wiren. 2011. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 174:3–11. Celik, I., I. Ortas, and S. Kilic. 2004. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a chromoxerert soil. Soil Tillage Res. 78:59–67. Chang, A.C., T.C. Granto, and A.L. Page. 1992. A methodology for establishing phytotoxicity criteria for chromium, copper, nickel and zinc in agricultural land application of municipal sewage sludges. J. Environ. Qual. 21:521‒536. Chand-Goyal, T., and R.A. Spotts. 1997. Biological control of postharvest diseases of apple and pear under semi-commercial conditions using three saprophytic yeasts. Biol. Control. 10:199–206. Channon, P., and M.P.W. Farina. 1991. Are soil-borne diseases depressing yields of continuously-grown maize in Natal? S Afr. J. Plant Soil 8:141–145. Chen, Y.P., P.D. Rekha, A.B. Arun, F.T. Shen, W.A. Lai, and C.C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34:33‒41. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57:2259–2261. Cloete, K., A. Valentine, M. Stander, L. Blomerus, and A. Botha. 2009. Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (Berg.). Pillans. Microb. Ecol. 57:624–632. Coda, R., C.G. Rizzello, R. Di Cagno, A. Trani, G. Cardinali, M. Gobbetti. 2013. Antifungal activity of Meyerozyma guilliermondii: identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol. 33:243–251. Dadhich, S.K., L.L. Somani, and D. Shilpkar. 2011. Effect of integrated use of fertilizer P, FYM and biofertilizers on soil properties and productivity of soybean-wheat crop sequence. J. Adv. Dev Res. 2:42–46. Davidson, D., and F.X. Gu. 2012. Materials for sustained and controlled release of nutrients and molecules to support plant growth. J. Agric. Food Chem. 60:870‒876. Deak, T. 2006. Environmental factors influencing yeasts. Yeast systematics and phylogeny implications of molecular identification methods for studies. p. 155–174. In C.A. Rosa and G. Peter (ed.) Biodiversity and ecophysiology of yeasts, The Yeast Handbook. Springer-Verlage Berlin Heidelberg. Dehestani, A., K. Kazemitabar, G. Ahmadian, N.B. Jelodar, A.H. Salmanian, M. Seyedi, H. Rahimian, and S. Ghasemi. 2010. Chitinolytic and antifungal activity of a Bacillus pumilus chitinase expressed in Arabidopsis. Biotechnol. Lett. 32:539–546. Donner. S.D., and C.J. Kucharik. 2008. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl. Acad. Sci. USA 105:4513‒ 4518. Egamberdiyeva, D., and G. Hoflich. 2004. Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J. Arid. Environ. 56:293‒301. El-Kholy, M.A, S. El-Ashry, and A.M. Gomaa. 2005. Biofertilization of maize crop and its impact on yield and grains nutrient content under low lates of mineral fertilizers. J. Appl. Sci. Res. 1:117–121. El-Mehalawy, A.A., N.M. Hassanein, H.M. Khater, E.A. Karam El-Din, and Y.A. Youssef. 2004. Influence of maize root colonization by therhizosphere actinomycetes and yeast fungi on plant growth and onthe biological control of late wilt disease. Int. J. Agric. Biol. 6:599–605. El-Tarabily, K.A., and K. Sivasithamparam. 2006. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience 47:25–35Faithfull, N.T. 2002. Methods in agricultural chemical analysis: a practical handbook. CABI, Wallingford. Falih, A.M., and M. Wainwright. 1995. Nitrification, S-oxidation and P-solubilization by the soil yeast Williopsis california and by Saccharomyces cerevisiae. Mycol. Res. 99:200–204. FAO. 2006. Fertilizer use by crop: FAO fertilizer and plant nutrition bulletin 17. Food and Agriculture Organization of the United Nation, Rome, pp 60–61. Feldmann, H. 2005. Yeast molecular biology: a short compendium on basic feature and novel aspect. Adolf-Butenandt-Institute University of Munich. URL: accessed on July 24, 2010. Fell, J.W. 1976. Yeasts in oceanic regions. p. 93‒124. In E.B.G. Jones (ed.) Recent advances in aquatic mycology, Elek Science, London. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:368–376. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20:406–416. Fitter, A.H., and J. Garbaye. 1994. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 141:525‒533. Fleet, G.H. 1998. Yeasts in natural habitats. Food Technol. Biotechnol. 36:285–289. Fracchia, S., I. Garcia-Romera, A. Godeas, and J.A. Ocampo. 2000. Effect of the saprophytic fungus Fusarium oxysporum on arbuscular mycorrhizal colonization and growth of plant in greenhouse and field trials. Plant Soil 233:175‒184. Fracchia, S., A. Godeas, J.M. Scervino, I. Sampedro, J.A. Ocampo, and I. Garcia-Romera. 2003. Interaction between the soil yeasts Rhodotorula mucilaginosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Soil Biol. Biochem. 35:701–707. Fracchia, S., I. Sampedro, J.M. Scervino, I. Garcia-Romera, J.A. Ocampo, and A. Godeas. 2004. Influence of saprobe fungi and their exudates on arbuscular mycorrhizal symbioses. Symbiosis 36:169–182. Frankenberger, W.T., and M, Arshad. 1995. Phytohormones in soils: microbial production and function. Marcel Dekker Inc. New York. Furnkranz, M., H. Muller, and G. Berg. 2009. Characterization of plant growth promoting bacteria from crops in Bolivia. J. Plant Dis. Prot. 116:149–155. Gadd, G.M., and J.A. Sayer. 2000. Fungal transformations of metals and metalloids. p. 237‒256. In D.R. Lovely (ed.) Environmental microbe-metal interactions. American Society for Microbiology. Washington DC. Garcia-Romera, I., J.M Garcia-Garrido, J. Martin, S. Fracchia, M.T. Mujica, A. Guides, and J.A. Ocampo. 1998. Interaction between saprotropic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis. 24:235‒246. Gaur, A.D., and K.P. Ostwal. 1972. Influence of phosphate dissolving bacilli on yield and phosphate uptake of wheat crop. Indian J. Exp. Biol. 19:393. Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 383–411. In A. Klute (ed.) Methods of soil analysis, part 1, physical and mineralogical methods. Agronomy 9, ASA, SSSA, Medison, WI. Glenn, E. 2000. An Encyclopedia of Scientific Essays. URL: 2000/JennyNg.shtml accessed on July 24, 2010. Gollner, M.J., D. Puschel, J. Rydlova, and M. Vosatka. 2006. Effect of inoculation with soil yeasts on mycorrhizal symbiosis of maize. Pedobiologia. 50:341–345. Golubev, W.I. 2006. Chapter 10, Antagonistic interactions among yeasts. p. 198–219. In C.A. Rosa, and G. Peter. (ed.) The Yeast handbook: biodiversity and ecophysiology of yeasts. Springer-Verlag, Berlin. Gomes, N.C.M., O. Fagbola, R. Costa, N.G. Rumjanek, A. Buchner, L. Mendona-Hagler, and K. Smalla. 2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microbiol. 69:3758–3766. Gong, F., J. Sheng, Z. Chi, and J.L. Gong. 2007. Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J. Ind. Microbiol Biotechnol. 34:179–185. Gordon, S.A., and R.P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26:192–195. Gupta, J.K., P. Sharma, H.W. Kern, and H. Sahm. 1990. Degradation of synthetic lignins and some lignin monomers by the yeast Rhodotorula glutinis. World J. Microbiol. Biotechnol. 6:53–58. Hagler, A.N., and D.G. Ahearn. 1987. Ecology of aquatic yeasts. p. 181–205. In A.H. Rose, and J.S. Harrison (ed.) The yeasts, 2nd edn. vol. 1. Academic Press, London. Hagvar, S. 1998. The relevance of the Rio-Convention on biodiversity to conserving the biodiversity of soils. Appl. Soil Ecol. 9:1–7. Hamuda, H.E.A.F.B., and I. Patko. 2010. Relationship between environmental impacts and modern agriculture. Obuda University e-Bulletin. 1:87–98. Haynes, R.J., and R. Naidu. 1998. Influence of lime, fertilizer, and manure application on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51:123–137. Heiner, C.R., K.L. Hunkapiller, S.M. Chen, J.I. Glass, and E.Y. Chen. 1998. Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res. 8:557–561. Hepper, C.M. 1983. The effect of nitrate and phosphate on the vesicular arbuscular mycorrhizal infection of Lettuce. New Phytol. 92:389–399. Hepper, C.M., and J. O''Shea. 1984. Vesicular-arbuscular mycorrhizal infection in lettuce (Lactuca sativa) in relation to calcium supply. Plant Soil 61–67. Hesham, A.E., and H.M. Mohamed. 2011. Molecular genetic identification of yeast strains isolated from Egyptian soils for solubilization of inorganic phosphates and growth promotion of corn plants. J. Microbiol. Biotechnol. 21:55‒61. Hsu, S.Y. 2010. IAA production by Streptomyces scabies and its role in plant microbe interaction. M.Sc. A thesis, Cornell Univ., New York. Hu, J., X. Lin, J. Wang, J. Dai, X. Cui, R. Chen, and J. Zhang. 2009. Arbuscular mycorrhizal fungus crop yield and P-uptake of maize (Zea mays L.): a field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biol. Biochem. 41: 2460–2465. Huang, P.M., and J.J. Germida. 2002. Chemical and biological processes in the rhizosphere: metal pollutants. p. 381–438. In P.M. Huang et al. (ed.) Interaction between soil particle and microorganisms. Wiley, Chichester. Hung, C.J., and C.Y. Chen. 2004. Gene cloning and biochemical characterization of chitinase CH from Bacillus cereus 28-9. Ann. Microbial. 54:289–297. Ibiremo, O.S., M.A. Daniel, A.A. Oloyede, and G.O. Iremiren. 2011. Growth of coffee seedlings as influenced by abuscular mycorrhizal inoculation and phosphate fertilizers in two soils in Nigeria. Int. Res. J. Plant Sci. 2:160‒165. Ike-Izundu, N.E. 2008. Interaction between arbuscular mycorrhizal fungi and soil microbial populations in the rhizosphere. Masters thesis, Rhodes Univ., Eastern Cape. Ingham, E. 1998. Fungi, glue and risky soils. BioCycle 39:86–87. Jeon, J.S., S.S. Lee, H.Y. Kim, T.S. Ahn, and H.G. Song. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41:271‒276. Johnson, N.C. 1993. Can fertilization of soil select less mutualistic mycorrhizae? Ecol. Appl. 3:749–757. Kapanen, A., and M. ItaKvaara. 2001. Ecotoxicity Tests for Compost Applications. Ecotox. Environ. Safe.49:1‒16. Karagiannidis, N., T. Thomidis, D. Lazari, E. Panou-Filotheou, and C. Karagiannidou. 2011. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Scientia Horticulturae.129:329–334. Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-inorganic forms. p. 643‒693. In A.L. Page et al., (ed.) Method of soil analysis, part 2, (2nd edn) chemical and microbiological methods. Agronomy. ASA, SSSA, Madison, WI. Kim, K., W. Yim, P. Trivedi, M. Madhaiyan, H.P. Decka Boruah, M.R. Islam, G. Lee, and T. Sa. 2010. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429–440. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120. Klironomos, J.N. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301. Koske, R.E., and J.N. Gemma. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92:486‒505. Kremer, R.J., M.F.T. Begonia, L. Stanley, and E.T. Lanham. 1990. Characterization of rhizobacteria association with weed seedlings. Appl. Environ. Microbiol. 56:1649–1655. Kucey, R.M.N. 1987. Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 52:2699–270. Kumar, S., P. Pandey, and D.K. Maheshwar. 2009. Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Eur. J. Soil Biol. 45:334–340. Kurtzman, C.P., and C.J. Robnett. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5́ end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 35:1216–1223. Kurtzman, C.P., and J.W. Fell (eds.). 1998. The Yeasts: a taxonomic study. 4th ed. Elsevier, New York. 1055 p. Kurtzman, C.P., and J. Piškur. 2006. Taxonomy and phylogenetic diversity among the yeasts. p. 29–46. In P. Sunnerhagen and J. Piskur (ed.) Comparative genomics: using fungi as models. Springer, Berlin. Kurtzman, C.P., and J.W Fell. 2006. Yeast systematics and phylogeny implications of molecular identification methods for studies. p. 11–30. In C.A. Rosa and G. Peter (ed.) Biodiversity and ecophysiology of yeasts, The yeast handbook. Springer, Berlin. Kurtzman, C.P., and M. Suzuki. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2–14. Lachance, M.A., and W.T. Starmer. 1988. In C.P. Kurtzman, and J.W. Fell (ed.) The yeasts a taxonomic study. 4th edn. Elsevier, B.V. Amserdam. Lai, W.A., P.D. Rekha, A.B. Arun, and C.C. Young. 2008. Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lectuca sativa L. Biol. Fertil. Soils. 45:155‒164. Leach, A.W., and J.D. Mumford. 2008. Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ. Pollut. 151:139‒147. Lima, J.R., L.R.B. Goncalves, L.R. Brandao, C.A. Rosa, and F.M.P. Viana. 2012. Isolation, identification and activity in vitro of killer yeasts against Colletotrichum gloeosporioides isolated from tropical fruits. J. Basic Microbiol. 52:1–10. Lin, T.F., H.I. Huang, F.T. Shen, and C.C. Young. 2006. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresour. Technol. 97:957–960. Linderman, R.G. 1992. Vesicular-arbuscular mycorrhizae and soil microbial interactions. 54:45‒70. In G.J. Bethlenfalvay, and R.G. Linderman (ed.) VA Mycorrhizae in sustainable agriculture. ASA, SSSA, Madison, WI. Lockwood, J.L. 1977. Fungistasis in soils. Biol. Rev. 52:1–43. Ludwig-Muller, J. 2004. From auxin homeostasis to understanding plant pathogen and plant symbiont interaction: editor''s research interests. J. Plant. Growth. Regul. 23:1‒8. Masih, E.I., and B. Paul. 2002. Secretion of β-1,3-Glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Curr. Microbiol. 44:391–395. Matthies, C., H.P. Erhard, and H.L. Drake. 1997. Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J. Basic Microbiol. 37:335–343. McAllister, C.B., I. Garcia-Romera, A. Godeas, and J.A. Ocampo. 1994. Interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae: effects on plant growth, arbuscular mycorrhizas and the saprophyte inoculants. Soil Biol. Biochem. 26:1363–1367. McCalla, T.M., and F.A. Haskins. 1964. Phytotoxic substances from soil microorganisms and crop residues. Bacteriol. Rev. 2:181‒207. Medina, A., M. Vassileva, F. Caravaca, A. Roldan, and R. Azcon. 2004. Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarowia lipolytica. Chemosphere. 56:449–456. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15:1409–1416. Meng, E., and J. Ekboir. 2000. Current and future trends in maize production and trade. CIMMYT World Maize Facts and Trends. 35–44. Men’ko, E.V., I.Y.U. Chernov, and B.A. Byzov. 2006. Interrelationships between yeast fungi and collembolans in soil. Microbiology 75:708–715. Mestre, M.C., C.A. Rosa, S.V. Safer, D. Libkind, and F.B. Fontenla. 2011. Yeast communities associated with the bulk-soil, rhizosphere and ectomycorrhizosphere of Nothofagus pumilio forest in northwestern Patagonia, Argentina. FEMS Microbiol Ecol. 78:531–541. Middelhoven, W.J. 1993. Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeast like fungi: a literature review and an experimental approach. Antonie van Leeuwenhoek. 63:125–144. Moawad, H., S.H. Salem, S.M.S. Badr El-Din, T. Khater, and M. Iskandar. 1986. Yeasts in soils of Egypt. Zentralbl Mikrobiol. 141:431–435. Mushtag, M., Sharfun-Nahar, and M.H. Hashmi. 2004. Isolation and identification of yeast flora from soil of Karachi, Pakistan. Pak. J. Bot. 36:173–180. Nakayan, P., F.T. Shen, M.H. Hung, and C.C. Young. 2009. Effectiveness of Pichia sp. CC1 in decreasing chemical fertilization requirements of garden lettuce in pot experiments. As. J. Food Ag-Ind. Special Issue, S66–S68. Nannipieri, P., J. Ascher, and M.T. Ceccherini. 2007. Microbial diversity and microbial activity in the rhizosphere. Cl.Suelo (Argentina) 25:89–97. Narsian, V., S.M. Samaha, and H.H. Patel. 2010. Rock phosphate dissolution by specific yeast. Indian J. Microbiol. 50:57‒62. Nassar, A.H., K.A. El-Tarabily, and K. Sivasithamparam. 2005. Promotion of plant growth by an auxin-producing isolate of yeast Williopsis saturnus endophydic in maize (Zea may L.) root. Biol Fertil Soils. 42:97–108. Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265‒270. Nenwani, V., P. Doshi, T. Saha, and S. Rajkumar. 2010. Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J. Yeast Fungal Res. 1:9‒14. Oyeka, C. A., and L.O. Ugwu. 2002. Fungal flora of human toe webs. Mycoses. 45:488–91. Penrose, D.M., and B.R. Glick. 2003. Methods for isolating and characterizing ACC-deaminase containing plant growth-promoting rhizobacteria. Physiol. Plant. 118:10–15. Philip, L.J., U. Posluszny, and J.N. Klironomos. 2001. The influence of mycorrhizal colonization on the vegetative growth and sexual reproductive potential of Lythrum salicaria L. Can. J. Bot. 79:381‒388. Piotrowski, J.S., T. Denich, J.N. Klironomos, J.M. Graham, and M.C. Rillig. 2004. The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytol. 164:365–373. Poulton, J.L., R.T. Koide, and A.G. Stephenson. 2001. Effects of mycorrhizal infection, soil phosphorus availability and fruit production on the male function in two cultivars of Lycopersion esculentum. Plant Cell Environ. 24:841–849. Powell, J., and J. Klironomos. 2007. The ecology of plant-microbial mutualisms. p. 257–280. In E.A. Paul (ed.) Soil Microbiology and Biochemistry. 3rd. ed. Elsevier. Canada. Punja. Z.K., and Y.Y. Zhang. 1993. Plant chitinases and their roles in resistance to fungal diseases. J. Nematol. 25:526–540. Rai, M.K. (ed.) 2006. Handbook of Microbial Biofertilizers. The Haworth Press, Inc. New York, London, Oxford. Rasmann, S., T.G. Kollner, J. Degenhardt, I. Hiltpold, S. Toepfer, U. Kuhlmann, J. Gershenzon, and T.C.J. Turlings. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737. Rayment, G.E., and F.R. Higginson. 1992. Australian laboratory handbook of soil and water chemical Methods, vol 3. Inkata Press, Sydney. Requena, N., I. Jimenez, M. Toro, and J.M. Barea. 1997. Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol. 136:667‒677. Rezende, L.A., L.C. Assis, and E. Nahas. 2004. Carbon, nitrogen and phosphorus mineralization in two soils amended with distillery yeast. Bioresour. Technol. 94:159–167. Rhode, O.H.J. 2005. Intraspecies diversity of Cryptococcus laurentii (Kufferath) C.E. Skinner and Cryptococcus podzolicus (Bab’eva & Reshetova) originating from a single soil sample. M.Sc. A thesis. University of Stellenbosch. Western Cape. Rillig, M.C., and D.L. Mummey. 2006. Mycorrhizas and soil structure. New Phytol. 171:41–53. Roberts, R.G. 1990. Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology. 80:526–530. Roy, R.N., A. Finck, G.J. Blair, and H.L.S. Tandon. 2006. Plant nutrition for food security ‒ a guide for integrated nutrient management. FAO Fertilizer and plant nutrition bulletin 16. Food and Agriculture Organization of the United Nation, Rome. Ruiz-Sanchez, M., E. Armada, Y. Munoz, I.E.G. de Salamone, R. Aroca, J.M. Ruiz-Lozano, and R. Azcon. 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J. Plant Physiol. 168:1031–1037. Ryan, M.H., and J.H. Graham. 2002. Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244: 263–271. Saharan, B.S., and V. Nehra. 2011. Plant growth promoting rhizobacteria: a critical review. Lif Sci. and Med. Res. 2011:LSMR-21. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425. Sampaio, J.P. 1999. Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Can. J. Microbiol. 45:491–512. Sampedro, I., E. Aranda, J.M. Scervina, S. Fracchia, I. Garcia-Romera, J.A. Ocampo, and A. Godeas. 2004. Improvement by soil yeasts of arbuscular mycorrhizal symbiosis of soybean (Glycine max) colonized by Glomus mosseae. Mycorrhiza. 14:229–234. Sansone, G., I. Rezza, V. Calvente, D. Benuzzi, and M.I. Sanz de Tosetti. 2005. Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol. Technol. 35:245–251. Santi Ferrara, F.I., Z.M. Oliveira, H.H.S. Gonzales, E.I.S. Floh, and H.R. Barbosa. 2012. Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417. Scervino, J.M., I. Sampedro, M.A. Ponce, M.A. Rodriguez, J.A. Ocampo, and A. Godeas. 2008. Rhodotorulic acid enhances root colonization of tomato plants by arbuscular mycorrhizal (AM) fungi due to its stimulatory effect on the pre-symbiotic stages of the AM fungi. Soil Biol. Biochem. 40:2474–2476. Schmitz, C., I. Goebel, S. Wagner, A. Vomberg, and U. Klinner. 2000. Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms. Appl. Microbiol. Biotechnol. 54:126–132. Secilia, J., and D.J. Bagyaraj. 1987. Bacteria and actinomycetes associated with pot culture of vesicular-arbuscular mycorrhizas. Can. J. Microbial. 33:1069‒1073. Sen, R. 2003. The root-microbe-soil interface: new tool for sustainable plant production. New Phytol. 157:391–398. Shahab, S., N. Ahmed, and N.S. Khan. 2009. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J. Agric Res. 4:1312–1316. Sharma, K. 2011. Inorganic phosphate solubilization by fungi isolated from agriculture soil. J. Phytol. 3:11‒12. Sharma, N., K.P. Sharma, R.K. Gaur, and V.K. Gupta. 2011. Role of plant chitinases in plant defense. Asian J. Biochem. 6:29–37. Shikano, S., L.S. Luckinbill, and Y. Kurihara. 1990. Changes of traits in a bacterial population associateden_US
dc.description.abstract溶磷酵母菌已被開發,因此,本研究從中興大學中興湖畔菩提樹根圈和一般土壤所分離的土壤酵母菌Meyerozyma guilliermondii CC1、 Rhodotorula mucilaginosa CC2 及 M. caribbica CC3菌株並測定其多種植物生長促進(PGP)特性,諸多溶磷、產生吲哚-3-乙酸(IAA)、幾丁質水解酶的活性及其他。利用白菜( Brassica rapa L. cv. Pekinensis)和玉米 (Zea mays L. cv. Tainong No. 1) 進行種子發芽生物分析。 接著,於溫室下利用萵苣 (Lactuca sativa L. cv. Capitata 和Taiwan sword leaf) 及玉米測試酵母菌對於植物生長的影響。M. guilliermondii CC1於玉米及白菜中具有相對較佳之PGP 特性及種子活力指標。在溫室下CC1+半量化肥(½CF) 明顯促進劍葉萵苣及玉米的乾重以及養分吸收。 進行田間實驗測試Meyerozyma guilliermondii (CC1)、CC1和混合菌株(AMF)( Glomus intraradices、G. mosseae和 Acaulospora scrobiculata) 以及上述菌株混合化肥 (CF) 對於玉米植物生長、產量和養分含量、以及採收後土壤特性的影響。結果顯示:相較於僅施化肥言,AMF+全量化肥 (CF) 的施用增加玉米植物生長及產量。AMF+CF及CC1+CF亦明顯提高植物吸收養分(N、P、K、Ca、Mg、 Fe、 Cu、Mn及 Zn)。尤其,AMF+CF處理產生最高的玉米產量。此外,相較於½CF的處理,AMF+½CF或CC1+½CF均增加植物鮮重和植物吸收養分 (P, K, Ca) 。採收後,AMF+CF的處理顯示較低的土壤總氮和Mehlich-鉀含量。相較於控制組及種植前,所有處理均提高土壤的pH值。AMF +CF處理亦提高EC值 。CC1+½CF處理的菌根菌根拓殖作用為最高。反之,CC1+AMF處理有減少玉米植物生長、產量、吸收養分的趨勢。田間試驗結果顯示AMF + CF或CC1+CF可能是促進玉米生產、及土壤pH中性化最好的處理。實驗結果證明M. guilliermondii CC1 具優良的植物生長促進特性,可減少施用化肥卻不影響萵苣及玉米的最適生產。zh_TW
dc.description.abstractThe soil yeasts Meyerozyma guilliermondii CC1, Rhodotorula mucilaginosa CC2 and M. caribbica CC3 were investigated after isolation, and screening from the rhizosphere of Ficus tree and surface soil from the National Chung Hsing University campus lake in Taichung. Isolated yeasts were characterized for multiple plant growth promoting (PGP) traits as phosphate–solubilization, indole-3-acetic acid (IAA)–production, chitinase activity, and biochemical characterization. Chinese cabbage (Brassica rapa L. cv. Pekinensis) and maize (Zea mays L. cv. Tainong No. 1) were used for seed bioassay. Consequently, growth–promoting effects of yeasts under greenhouse were evaluated using lettuce (Lactuca sativa L. cv. Capitata and Taiwan sword leaf) and maize (Zea mays L. cv. Tainong No.1). Strain M. guilliermondii CC1 possesses relatively superior PGP traits and biochemical potency that reflected as higher seed vigor index in maize and Chinese cabbage. CC1+½CF significantly improved the dry-weights and nutrient uptakes of sword leaf lettuce and maize under greenhouse. A field experiment was conducted to determine the effect of yeast M. guilliermondii CC1 and three species of arbuscular mycorrhizal fungi (AMF; Glomus intraradices, G. mosseae, and Acaulospora scrobiculata) by integration of chemical fertilizer (CF) on plant growth, yield and nutrients uptake in maize and soil properties. The results showed that the AMF+CF application improved plant growth and maize yield compared to the CF treatment alone. Plant nutrient uptake (N, P, K, Ca, Mg, Fe, Cu, Mn, and Zn) was also enhanced significantly in the combined application of AMF+CF and CC1+CF. Especially, the maize yield was highest in combined application of CF and AMF. In addition, the AMF+½CF and CC1+½CF increased plant fresh weight, plant nutrient uptake (P, K, and Ca) compared to ½CF treatment alone. After harvesting, soil total-N and Mehlich–K content showed lowest amount in the combination of AMF+CF treatment. The pH in soil after harvesting tends to increase in most of treatments compared with control and soil pH before sowing. The electrical conductivity (EC) has also increased in the AMF+CF compared with other treatments. Mycorrhizal root colonization was highest in the CC1+½CF treatment. In contrast, the combination of CC1+AMF showed decrease in growth, yield, nutrient uptake, and root colonization of maize. In field study, the combination of AMF+CF and CC1+CF treatments gave best results to improve the maize production, and slight increase in soil pH and EC was recorded at harvest. In conclusion, biochemical results have shown superior plant growth-promoting traits of M. guilliermondii CC1 that reduced requisite chemical fertilizer application without affecting the optimal productivity in lettuce, and maize. Moreover, the treatment CC1+½CF may provide the alternative way to reduce the chemical fertilizer without affecting crop productivity.en_US
dc.description.tableofcontentsCONTENT Page ACKNOWLEDGMENTS(i) ABSTRACT (CHINESE)(iii) ABSTRACT (ENGLISH)(iv) CONTENT(vi) LIST OF TABLES(viii) LIST OF FIGURES(xi) LIST OF PLATES(xiii) CHAPTER 1 INTRODUCTION(1) CHAPTER 2 REVIEW AND LITERATURE(4) 2.1 Introduction(4) 2.2 The yeast in soil and its role in agriculture soil ecology (5) 2.3 Environmental factors influence on yeast(14) 2.4 The effect of yeast on soil rhizosphere (15) CHAPTER 3 MATERIALS AND METHODS 16 3.1 Identification and plant growth promoting characteristic of yeasts under laboratory condition (18) 3.1.1. Isolation and cultivation of phosphate-solubilizing yeasts (PSY) (18) 3.1.2. Molecular identification of yeasts(18) 3.1.3. Morphological, physiological and biochemical characterization of yeasts (19) 3.1.4. In-vitro test with plant growth regulators traits (20) 3.1.5. Effect of differences temperature, pH and salt concentration on solubilizing tri-calcium phosphate ability of M. guilliermondii CC1 (21) 3.1.6 Seed germination bioassay on sword leaf lettuce using yeast M. guilliermondii CC1, R. muchilaginosa CC2, and M. caribbica CC3 for preliminary screening of selected yeast (22) 3.2 Effects of yeast inoculation on the growth of head lettuce, sword leaf lettuce and maize under greenhouse pot experiment(25) 3.3 The impact of yeast and arbuscular mycorrhizal fungi (AMF) on sword Page leaf lettuce, head lettuce, and maize growth under pot experiments(27) 3.4 The effect of yeast M. guilliermondii CC1 on the reducing chemical fertilization and production of maize (Zea mays L.) under field experiment(29) CHAPTER 4 RESULTS(31) 4.1 Idendification and plant growth promoting characteristic of yeast M. guilliermondii CC1, R. mucilaginosa CC2 and M. caribbica CC3 under laboratory condition(31) 4.1.1 Isolation and molecular identification(31) 4.1.2 Morphological, physiological and biochemical characterization of yeasts (33) 4.1.3 Plant growth promoting characteristic of three yeasts: Mineral phosphate solubilizing activities, IAA production, chitinase activity (40) 4.1.4 Efficacy tri-calcium phosphate phosphate solubilizing of M. gulliermondii CC1 under stress condition (temperature, NaCl concentration, and pH level)(42) 4.1.5 In vitro seed germination bioassay for preliminary yeasts screening(45) 4.1.6 The effective concentration of M. guilliermondii CC1, R. mucilaginosa and M. caribbica CC3 and type of solution (cell suspension and cell pellet) on the seed vigor index (SVI) of Chinese cabbage and maize(47) 4.2 Effects of yeast inoculation on the growth of head lettuce, sword leaf lettuce and maize under greenhouse pot experiment(56) 4.3 The interaction between yeast and arbuscular mycorrhizal fungi on sword Leaf lettuce, head lettuce, and maize growth in a pot experiment under greenhouse conditions (61) 4.4 The effect of yeast M. guilliermondii CC1 and arbuscular mycorhizal fungi AMF) on the reducing chemical fertilization and production of maize (Zea mays L.) under field experiment(70) CHAPTER 5 DISCUSSION (90) CHAPTER 6 CONCLUSION (102) CHAPTER 7 REFERENCES (104)zh_TW
dc.subjectMeyerozyma guilliermondii (CC1)zh_TW
dc.subjectMeyerozyma guilliermondii (CC1)en_US
dc.subjectchemical fertilizeren_US
dc.subjectnutrient uptakeen_US
dc.subjectphosphate-solubilizing yeasten_US
dc.subjectIndole-3-acetic aciden_US
dc.subjectplant growth promoting yeasten_US
dc.subjectvesicular arbuscular mycorrhizae fungi (AMF)en_US
dc.titleEffectiveness of soil yeasts on agricultural production and its impact on plant nutritionen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:土壤環境科學系
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.