Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25621
標題: 巴西蘑菇蕈柄基部分離細菌對其菌絲體生長影響之研究
Selection of bacteria and their effects on mycelium growth of Agaricus blazei Murrill
作者: 江昆芳
Chiang, Kun-Fang
關鍵字: 巴西蘑菇;Agaricus blazei Murrill;蘑菇;菌絲;菌絲體;Agaricus blazei;mycelium;mushroom
出版社: 土壤環境科學系所
引用: 陸、 參考文獻 王西華。1976。洋菇堆肥中二氧化碳含量與菌絲細胞核分部之關係。臺灣區第五屆洋菇學術討論會報告。p:121-142。 王伯徹。2000。具開發潛力的食藥用菇介紹。食品工業月刊。32: 1-17。 王伯徹、邱世浩、黃仁彰。1998。食用菇保健食品專輯。食品工業月刊。30:1-36。 王伯徹、陳啟楨、華傑。1998。食藥用菇的培養與應用。財團法人食品工業發展研究所編印。 王波、鮮靈。2001。姬松茸栽培技術。金盾出版社。北京。 文博均。2004。探討深層發酵中環境因子對巴西洋菇生產多醣之影響。國立中央大學化學工程與材料工程研究所博士論文。 石信德。1999。放線菌在農業上的應用。農業世界雜誌。186:26-34。 江枝和、朱 丹、林新堅、楊佩玉。1994。姬松茸生物學特性的研究。食用菌學報。S1:13。 江枝和、朱丹、楊佩玉。1996。姬松茸生物學特性研究。食用菌學報。3:5-12。 朱俊南。2000。蘭花菌根菌之分離與接種對文心蘭幼苗生長之影響。國立屏東科技大學熱帶農業研究所碩士論文。 朱繼先、沙長青、朴萬華。2004。北方雙孢菇與巴西菇栽培關鍵技術黑龍江科學技術出版社。中國。哈爾濱。 朱俊南。2010。巴西蘑菇有益微生物之篩選及其對子實體生育之影響。國立中興大學土壤環境科學研究所博士論文。 宋細福、許玲卿。1989。洋菇堆肥製作與生產管理技術。臺灣區第七屆洋菇學術討論會報。p:71-87。 汪麟。1999。酵素菌制作堆肥種植雙孢蘑菇。中國食用菌。2:43。 吳寬澤。2001。巴西洋菇木屑栽培。農業試驗所技術服務。3:18-20。 吳寬澤。2005。巴西蘑菇。p:637-640。行政院農業委員。臺灣農家要覽。農作篇(二)。 80 吳昇晏。2011。香蕉內生細菌對鐮胞菌之拮抗特性研究。國立中興大學土壤環境科學研究所碩士論文。p:25-28。 呂作舟。2008。食用菌無害化栽培與加工。化學工業出版社。北京。 何修金、楊佩玉、陳體強、陳福如、江枝和、李開本。1999。藥用菌姬松茸在福建的栽培。福建農業學報。福建省農業科學院。福州。14:58-63。 杜愛玲、陳立國、楊新美。1999。覆土層有益微生物對雙孢蘑菇子實體形成的影響。華中農業大學學報。18:339-341。 杜敏華。2007。食用菌栽培學。化學工業出版社。北京。221頁。 肖波、楊立紅、王艷華。2004。六個姬松茸菌株菌絲超微結構的觀察。食用菌學報。11:8-12。 李邦敏。2002。抗癌新希望─巴西蘑菇。宇河文化出版。230頁。 林良平。1971。腦菌病之發生生態與生物防治之研究 (A) 菇床微生物相與腦病發生之關係。臺灣區第三屆洋菇學術討論會報告。p:205-212。 林俊義、陳大武。1973。利用微生物防治腦菌病之研究。臺灣區第四屆洋菇學術討論會報告。pp:239-273。 林炎金、江枝和、陳大新、楊佩玉。1994。姬松茸菇的營養成分研究初探。食用菌學報。5:113。 林秀卿。1999。食藥用菇類之呈味品質和抗氧化性質之評估。國立中興大學食品科學研究所碩士論文。 林占熺。2000。草菌學。中國農業出版。北京。176頁。 林錫杰、王伯徹。2001。菇類藥用功能及其生產研究。食品工業月刊。34:18-30。 林克融。2002。探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響。國立中央大學化學工程與材料工程研究所碩士論文。 林錫杰、王伯徹。2002。菇類之藥效功用及其生產研究。食品工業月刊。34: 18-30。 81 林陳強、林戎斌、鄭永標、陳濟琛。2007。土壤與人工食用菌的生產關係。26: 7-9。 林詩耀。2007。重油降解細菌之表現型及基因型特性研究。國立中興大學土壤環境科學研究所碩士論文。 林詩耀。2012。碳氫化合物降解與植物生長促進細菌之系統分類及分子生物偵測技術建立。國立中興大學土壤環境科學研究所博士論文。 周曉蘭、施巧琴、楊梅。2002。姬松茸的研究概況。福建輕紡。12:1-4。 苗張一屏。1975。土壤微生物的拮抗作用。植保會刊。17:173-186。 洋菇試驗研究資料編輯委員會。1973。洋菇栽培手冊。洋菇試驗研究資料中心。台北市。 洋菇試驗研究資料編輯委員會。1977。洋菇栽培原理。洋菇試驗研究資料中心。台北市。 胡開仁、宋細福。1971。洋菇堆肥微生物間關係之研究。臺灣區第三屆洋菇學術討論會報告。p:121-126。 胡開仁、宋細福、徐美媛。1976。放射菌與洋菇及堆肥中幾種微生物間生長關係之研究。臺灣區第五屆洋菇學術討論會報告。p:101-109。 胡開仁、劉萍。1976。洋菇顆粒菌種改良之研究。臺灣區第五屆洋菇學術討論會報告。p:43-44。 馬榮村。1999。10-氧-反-烯酸 (ODA) 對食藥用菇類菌絲生長之影響。國立中興大學食品科學研究所碩士論文。 袁書欽、閆靈玲、武金鐘。2003。姬松茸栽培技術圖說。河南科學技術出版社。中國。河南。187頁。 高瑀瓏、薛景珍、江漢湖、蘇立敏。2004。姬松茸菌絲生長條件的試驗研究。食用菌。2:9-10。 徐世典、陳脉紀。1973。臺灣洋菇細菌病害之研究。p:274-302。 孫守恭、韓又新。1971。洋菇覆土微生物生物學之研究。I. 覆土之微生物相。臺灣區第三屆洋菇學術討論會報告。p:148-166。 82 孫守恭。1975。Fusarium屬病原菌在土壤中之生態。植保會刊。17:216-232。 孫守恭。1996。台灣果樹病害。世維出版社。台中。550頁。 孫守恭、黃振文。1996。台灣植物鐮孢菌病害。世維出版社。台中。170頁。 孫宏偉、閻來鳳、孫懷鎖、寧仙耀。2003。姬松茸高產栽培模式研究。太原科技。5:18-19。 許國城、陳政明、張祖堂。1998。姬松茸高產栽培技術研究。福建農業研究。1:16-17。 許英欽。2002。探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究。國立中央大學化學工程與材料工程研究所碩士論文。 許淳鈞。2006。探討培養基組成對巴西洋菇發酵生產活性多醣及對其特性之影響。國立中央大學化學工程與材料工程研究所博士論文。 陳寶玉譯。P. J.C. Vedder著。1986。現代蘑菇栽培學。五洲出版社。臺北。407頁。 陳濟琛、鄭永標、林新堅、林戎斌、蔡海松。2005。姬松茸菌絲及擔孢子核觀察。南京農業大學學報。28:144-146。 張卉、劉長江。2003。姬松茸 (Agaricus blazei Murrill) 生理活性物質的研究進展。瀋陽農業大學學報。34:59-62。 張曉莉、薛文明、張瓊妃、李恩慈。2004。食藥用真菌中多醣體鑑別之研究。高苑技術學院化學工程研究所碩士論文。 張福元、馬琴。2006。酵素菌發酵和二次發酵玉米秸稈料對雙孢蘑菇生育影響的研究。中國食用菌。03:53-55。 黃大斌、李開本、陳體強。1994。姬松茸生物學特性研究初報。中國食用菌。2:12-15。 黃家樑。1997。液態培養生產靈芝菌絲體與靈芝多醣之研究。私立東海大學化學工程學研究所碩士論文。 83 黃鈴娟。2000。樟芝與姬松茸之抗氧化性質及其多醣組成分析。國立中興大學食品科學研究所碩士論文。 黃諺諺、葉竹秋、林躍鑫。2000。巴西蘑菇的營養成分分析。食用菌。2:42。 黃仕政。2005。蛹蟲草之培養和其呈味性質及經γ-照射之巴西蘑菇子實體和樟芝菌絲體之抗氧化性質。國立中興大學食品科學研究所博士論文。200頁。 黃玉如。2005。液體培養條件對巴西洋菇 (Agaricus blazei Murill) 菌絲體及胞外多醣體生成之影響。國立屏東科技大學農園生產研究所碩士論文。 傅傳杰、許廣波、魏鐵錚。2002。姬松茸的菌種特性和製種技術。食用菌。5:16。 楊旭。1999。Agaricus blazei Murrill栽培料醱酵製備技術。哈爾濱師範大學自然科學學報。15:101-103. 楊國良。2004。蘑菇生產全書。中國農業出版社。北京。596頁。 楊盛行。2005。生物肥料的開發與應用潛力。農業生技產業季刊。4:9-17。 楊翔筑。2005。以豆類為基質培養靈芝及巴西洋菇對其發酵產品中異黃酮含量、酵素活性變化及抗氧化能力之探討。國立中興大學食品科學研究所碩士論文。 楊盛行。2006。耐高溫菌在環保和農業之利用。生物技術與綠色農業研討會專刊。pp:75-102。 劉培田。1995。食用菌覆土栽培機制及效應。江蘇食用菌。16:33-34。 劉伯康。1997。數種傳統食用植物抗氧化性之研究。國立中興大學食品科學研究所碩士論文。 劉勝宇。2001。探討培養溫度對巴西蘑菇液態醱酵之影響。國立中央大學化學工程研究所碩士論文。 劉祐誠。2010。絕對厭氧異化性鐵還原微生物新種特性之研究。國立中興大學土壤環境科學研究所碩士論文。 84 廖英明、杜金池。1980。洋菇細菌性褐菇病拮抗菌之選拔研究。臺灣洋菇。4:49-54。 廖英明、吳正球。1981。Psudomonas tolaasii拮抗性細菌及其防治洋菇細菌性褐菇病之研究。臺灣洋菇。5:74-84。 廖英明。1989。臺灣洋菇病害問題。臺灣區第七屆洋菇學術討論會報。p:91-96。 蔡漢霓。2005。巴西蘑菇萃取物抗氧化活性之研究。國立成功大學醫學檢驗生物技術研究所碩士論文。 賴慶亮譯。水野卓、川合正允著。1997。菇類的化學、生化學。國立編譯館出版。 龍明有。2004。樟芝發酵生產多醣體及其抗氧化特性之研究。國立中央大學化學工程與材料工程研究所博士論文。 顏秀真。2005。影響巴西蘑菇菌絲體生長及產菇因子之探討。國立屏東科技大學植物保護研究所碩士論文。 Atkins, F.C. 1974. Guide to mushroom growing. Faber and Farber Limited 3 Queen Square London. p. 122. Angeli, J.P.F., L.R. Ribeiro, M.L.C. Gonzaga, S.A. Soares, M.P.S.N. Ricardo, M.S. Tsuboy, R.S.S. Knasmueller, R.E. Linhares, and M.S. Mantovani. 2006. Protective effects of β-glucan extracted from Agaricus brasiliensis against chemically induced DNA damage in human lymphocytes. Cell Biol. Toxicol. 22:285-291. Andrade, M.C.N., J. Kopytowski Filho, M.T.A. Minhoni, L.N. Coutinho, and M.B. Figueiredo. 2007. Productivity, biological efficiency, and number of Agaricus blazei mushrooms grown in compost in the presence of Trichoderma sp. and Chaetomium olivacearum contaminants. Braz. J. Microbiol. 38:243-247. Afsheen, S., D.C. Alan, and M. Sarah. 2008. Effect of compost and casing treatments of insecticides against the sciarid Bradysia ocellaris (Diptera: Sciaridae) and on the total yield of cultivated mushrooms, 85 Agaricus bisporus. Pest Manag. Sci. 65:375-380. Barnett, H.L., and V.G. Lilly. 1947. The relationship of thiamin to the production of perithecia by Ceratostomella fimibriata. Mycologia 39:699-708. Barinova, S.A. 1962. Carbon dioxide utilization and its role in metabolism of mould fungi. Mikrobiologiya 31:10-17. Barksdale, A.W. 1962. Effect of nutritional deficiency on growth and sexual reproduction of Achlya ambisexualis. Am. J. Botany. 49:633-638. Brosius, J., M.L. Palmer, P.J. Kennedy, and H.F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. 75:4801-4805. Bechara, M.A., P.H. Heinemann, P.N. Walker, A. Demirci, and C.P. Romaine. 2009. Evaluating the addition of activated carbon to heat-treated mushroom casing for grain-based and compost-based substrates. Bioresour. Technol. 100:4441-4446. Cresswell, P.A., and W.A. Hayes. 1979. Further investigation on the bacterial ecology of the casing layer. Mush. Sci. 10:347-359. Chang, S.T. 1993. Mushroom and mushroom biology. p. 1-13. In Genetics and breeding of edible mushrooms, eds Chang, S.T., J.A. Buswell, and P.G. Miles. Philadelphia: Gordon and Breach Science Publishers. Chang, R. 1996. Functional properties of edible mushrooms. Nutrition Reviews. 54:11-15. Coskun, G., and P. Aysun. 2003. Using tea waste as a new casing material in mushroom (Agaricus bisporus (L.) Sing.) cultivation. Bioresour. Technol. 88:153-156. Chen, X.H., H.B. Zhou, snd G.Z. Qiu. 2009. Analysis of several heavy metals in wild edible mushrooms from regions of China. Bull 86 Environ. Contam. Toxicol. 83:280-285. Chu, J.N., A.B. Arun, W.M. Chen, J.H. Chou1, F.T. Shen, P.D. Rekha, P. Kampfer, L.S. Young, S.Y. Lin, and C.C. Young. 2010. Agaricicola taiwanensis gen. nov., sp. nov., an alphaproteobacterium isolated from the edible mushroom Agaricus blazei. Int. J. Syst. Evol. Microbiol. 60:2032-2035. Dong, Q., J. Yao, X.T. Yang, and J.N. Fang. 2002. Structural characterization of a water-soluble beta-D-glucan from fruiting bodies of Agaricus blazei Murill. Carbohydr. Res. 337:1417-1421. Dias, E.S., C. Abe, and R.F. Schwan. 2004. Truths and myths about the mushroom Agaricus blazei. Sci. Agric. 61:545-549. Domondon, D.L., W. He, N.D. Kimpe, M. Hofte, and J. Poppe. 2004. β-adenosine, a bioactive compound in grass chaff stimulating mushroom production. Phytochemistry 65:181-187. Delphina, P.M., and J.R. Daniel. 2008. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Bioresour. Technol. 99:3205-3212. Eger, G. 1971. Some experiments and comments on the action of bacteria on sporophore initiation in A. bisporus. Mush. Sci. 8:719-725. Eger, G. 1972. Experiments and comments on the action of bacteria on sporophore initiation in Agaricus bisporus. Mush. Sci. 8:719-726. Edward, U., T. Rogall, H. Blocker, M. Emde, and E.C. Bottger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17:7843-7853. Ebina, T., and Y. Fujimiya. 1998. Antitumor effect of a peptide-glucan preparation extracted from Agaricus blazei in a double grafted tumor system in mice. Biotherapy 11:259-265. 87 Ertugay, N., and Y.K. Bayhan. 2008. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. J. Hazard. Mater. 154:432-439. Freeman, A.E.H. 1979. Agaricus in North America : type studies. Mycotaxon 8:1-49. Fuchs, J.G., Y. Moenne-Loccoz, and G. Defago. 1999. Ability of nonpathogenic Fusarium oxysporum Fo47 to protect tomato against Fusarium wilt. Biol. Control. 14:105-110. Freeman, S., A. Zveibil, H. Vintal, and M. Maymon. 2002. Isolation of nonpathogenic mutants of Fusarium oxysporum f. sp. melonis for boilogical control of Fusarium wilt in cucurbits. Phytopathology 92:164-168. Griensven, V., L. J, and L. D. 1988. The cultivation of mushrooms. Darlington Mushroom Laboratories, Rustington, Sussex, England. p. 515. Gerhardt, P., R.G.E. Murray, W.A. Wood, and N.R. Krieg. 1994. Polymerase chain reaction. Methods Gen. Mol. Bacterial. 19:419-432. Gregori, A., B. Pahor, R. Glaser, and F. Pohleven. 2008. Influence of carbon dioxide, inoculum rate, amount and mixing of casing soil on Agaricus blazei fruiting bodies yield. Acta Agric. Slov. 91:371-378. Garcia, M.A., J. Alonso, and M.J. Melgar. 2009. Lead in edible mushrooms: Levels and bioaccumulation factors. J. Hazard. Mater. 167:777-783. Hayes, W.A., P.E. Randle, and F.T. Last. 1969. The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lange) Sing. Ann. Appl. Biol. 64:177-187. Hawksworth, D.L., P.M. Kirk, B.C. Sutton, and D.N. Pegler. 1996. Ainsworth and Bisby’s Dictionary of the fungi. 8th ed. CAB 88 International, New York. Horwath, W.R., E.A. Paul, D. Harris, J. Norton, L. Jagger, and K.A. Horton. 1996. Defining a realistic control for the chloroform fumigation-incubation method using microscopic counting and 14C-substrates. Can. J. Soil Sci. 76:459-467. Hirotani, M., S. Hirotani, H. Takayanagi, and T. Yoshikiwa. 1999. Blazeispirol A, an unprecedented skeleton from the cultured mycelia of the fungus Agaricus blazei. Tetrahedron Lett. 40:329-332. Hirotani, M., K. Sai, K. Hirotani, and T. Yoshikawa. 2002. Blazeispirols B, C, E and F, des-A-ergostane-type compounds, from the cultured mycelia of the fungus Agaricus blazei. Phytochemistry 59:571-577. Itoh, H., H. Ito, and H. Noda. 1994. Inhibitory action of a (1-->6)-beta-D-glucan-protein complex (F III-2-b) isolated from Agaricus blazei Murill ("himematsutake") on Meth A fibrosarcoma-bearing mice and its antitumor mechanism. Jpn. J. Pharmacol. 66:265-271. Ito, H., K. Shimura, H. Itoh, and M. Kawabe. 1997. Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade Strain 101) “Himematsutake” and its mechanism in tumor-bearing mice. Anticancer Res. 17:277-284. Izawa, S., and Y. Inoue. 2004. A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murrill. Appl. Microbiol. Biotchnol. 64:537-542. Kawagishi, H., R. Katsumi, T. Sazawa, T. Mizuno, T. Hagiwara, and T. Nakamura. 1989. Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry 27:2777-2779. Kawagishi, H., T. Kanao, R. Inagaki, T. Mizuno, K. Shimura, H. Ito, T. Hagiwara, and T. Nakamura. 1990. Formolysis of a potent antitumor 89 (1-6) β-D-glucan-protein complex from Agaricus blazei fruiting bodies and antitumor activity of the resulting products. Carbohydr. Polym.12:393–403. Kirkpatrick, F.H. 1990. Overview of agarose gel properties. Curr. Commun. Cell Mol. Biol. 1:9-22. Kinugawa, K. 1993. Physiology and the breeding of Flammulina velutipes. p. 87-110. In Genetics and breeding of edible mushrooms, eds Chang, S.T., J.A. Buswell, and P.G. Miles. Philadelphia: Gordon and Breach Science Publishers. Koeuth, T., L. Versalovic, and J.R. Lupski. 1995. Differential subsequence conservation of interspersed repetitive Streptococcus pneumonia box elements in diverse bacteria. Genome Res. 5:408-418. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis sequence alignment. Brief Bioinform. 5:150-163. Ker, Y.B., K.C. Chen, C.C. Chyau, C.C. Chen, J.H. Guo, C.L. Hsieh, H.E. Wang, C.C. Peng, C.H. Chang, and R.Y. Peng. 2005. Antioxidant Capability of Polysaccharides Fractionated from Submerge-Cultured Agaricus blazei Mycelia. J. Agric. Food Chem. 53:7052-7058. Kimura, Y. 2005. New anticancer agents: in vitro and in vivo evaluation of the antitumor and antimetastatic actions of various compounds isolated from medicinal plants. In Vivo. 9: 37-60. Lockard, D.J., and L.R. Kneebone. 1963. Investigation of the metabolic gases produced by Agaricus bisporus (Lange) Sing. Mush. Sci. 5:281. Long, P.E. and L. Jacobs. 1968. Some observations on CO2 and sporophore initiation in the cultivated mushroom. Mush. Sci. 7:373-384. 90 Lin, C.Y., and D.W. Chen. 1974. Actinomycetes as Biological Control Agents for Calves'' Brains Fungus, Diehiomyces microsporus, in Mushroom Culture. Mushroom Science IX, part 2 Proceedings of the Ⅸ International Science Congress on the Cultivation of Edible Fungi Taipei, Taiwan, Republic of China. p. 125-143. Larson, R.A. 1988. The antioxidants of higherplants. Phytochemistry 27:969-978. Lin, J.H., and S.S. Yang. 2006. Mycelium and polysaccharide production of Agaricus blazei Murrill by submerged fermentation. J. Microbiol. Immunol. Infect. 39:98-108. Murrill, W.A. 1945. New Florida Fungi. J. Florida Acad. Sci. 8:175-198. Masaphy, S., D. Levanon, R. Tchelet, and Y. Henis. 1987. Scanning electron microscope studies of interactions between Agaricus bisporus (Lang) Sing hyphae and bacteria in casing soil. Appl. Environ. Microbiol. 53:1132-1137. Mizuno, T.K. 1995. Agaricus blazei Murrill medicinal and dietary effects. Food Rev. Int. 11:167-172. Moore-Landecker, E. 1996. Fundamentals of the fungi. 4th ed. Prentice Hall, New Jersey. p. 574. Mu, L.Y. 2000. p. 56-58. In The research method of plant chemical protection, third ed. China Agricultural Press. Beijing. Melgar, M.J., J. Alonso, and M.A. Garcia. 2007. Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrospores. Sci. Total Environ. 385:12-19. Melgar, M.J., J. Alonso, and M.A. Garcia. 2009. Mercury in edible mushrooms and underlying soil : Bioconcentration factors and toxicological risk. Sci. Total Environ. 407:5328-5334. Niederpruem, D.J. 1963. Role of carbon dioxide in the control of fruiting of Schizophyllum commune. J. Bacteriol. 85:1300-1308. 91 Nelson, B.C., R.S. Adriano, F.E. Augusto, and A.L. Giani. 2010. Alternative to peat for Agaricus brasiliensis yield. Bioresour. Technol. 101:712-716. Ohno, N., M. Furukawa, N.N. Miura, Y. Adachi, M. Motoi, and T. Yadomae. 2001. Antitumor β-Glucan from the Cultured Fruit Body of Agaricus blazei. Biol. Pharm. Bull. 24:820-828. Oshiman, K., Y. Fujimiya, T. Ebina, I. Suzuki, and M. Noji. 2002. Orally administered beta-1,6-D-polyglucose extracted from Agaricus blazei results in tumor regression in tumor-bearing mice. Planta Med. 68:610–614. Park, J.Y., and V.P. Agnihotri. 1969. Bacterial metabolites trigger sporophore formation of Agaricus bisporus. Nature Intl. Jour. of Sci. 222:5197. Pokhrel, C.P., and S. Ohga. 2007. Cattle Bedding Waste Used as a Substrate in the Cultivation of Agaricus blazei Murill. J. Fac. Agr., Kyushu Univ. 52:295-298. Reyes, F., and R. Lahoz. 1976. Liberation of protoplasts from mycelium of Neurospora crassa by means of enzymes obtained from autolyzed cultures of this fungus. Anton. Antonie Van Leeuwenhoek 42:457-460. Reddy, M.S., and Z.A. Patrick. 1990. Effect of bacteria associated with mushroom compost and casing materials on basidiomata formation in Aagricus bisporus. Can. J. Plant Pathol. 12:236-242. Rajarathnam, S., M.N. Shashirekha, and Z. Bano. 1998. Biodegradative and biosynthetic capacities of mushrooms: present and future strategies. Crit. Rev. Biotechnol. 18:291-236. Sharp, P.A., and B. Suden. 1973. Detection of two restriction endonuclease activities in Haemopilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. Biochemistry 92 12:3055-3063. Southern, E.M. 1975. Detection of specific sequence among DNA fragments separate by gel electrophoresis. J. Mol. Biol. 98:503-517. Shimura, K., H. Ito, and H. Hibasami. 1983. Screening of host-mediated antitumor polysaccharides by crossed immunoelectrophoresis using fresh human serum. Jpn. J. Pharmacol. 33(2):403-408. Segula, M., D. Levanon, O. Danai, and Y. Henis. 1989. Nutritional supplementation to the casing soil: Ecological aspects and mushroom production. Mushroom Science XII Proceedings of the Twelfth International Congress on the Science and Cultivation of Edible Fungi. p. 417-426. Stamets, P. 2000. Growing gourmet and medicinal mushrooms. 3rd ed., Ten Speed Press. Berkeley Toronto. p. 574. Stamets, P. 2000. Techniques for the cultivation of the medicinal mushroom royal sun Agaricus blazei Murr. (Agaricomycetideae). Int. J. Med. Mush. 2:151-160. Sorimachi, K., K. Akimoto, Y. Ikehara, K. Inafuku, A. Okubo, S. Yamazaki. 2001a. Secretion of TNF- alpha, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murrill fractions in vitro. Cell Strut. Funct. 26:103-108. Sorimachi, K., Y. Ikehara, G. Maezato, A. Okubo, S. Yamazaki, K. Akimoto, A. Niwa. 2001b. Inhibition by Agaricus blazei fractions of cytopathic effect induced by western equine encephalitis (Wee) virus on Vero cells in vitro. Biosci. Biotechnol. Biochem. 65:1645–1647. Saravanan, T., M. Muthusamy, and T. Marimuthu. 2003. Development of integrated approach to manage the fusarial wilt of banana. Crop Pro. 22:1117-1123. Shu, C.H., and B.J. Wen. 2003. Enhanced shear protection and increased production of an anti-tumor polysaccharide by Agaricus blazei in 93 xanthan-supplemented cultures. Biotechnol. Lett. 25:873-876. Shen, F.T., and C.C. Young. 2005. Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol. Lett. 250:221-227. Shen, F.T., P. Kampfer, C.C. Young, W.A. Lai, and A.B. Arun. 2005. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int. J. Syst. Evol. Microbiol. 55:1301-1304. Shen, F.T., H.L. Lu, J.L. Lin, W.S. Huang, A.B. Arun, and C.C. Young. 2006. Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene. Res. Microbiol. 157:367-375. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. Takasaburo, E., and F. Yoshiaki. 1998. Antitumor effect of peptide-glucan preparation extracted from Agaricus blazei in a double-grafted tumor system in mice. Biotherapy Dordrecht. 11:259–265. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271. Watts, D., and J.R. MacBeath. 2001. Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. Methods Mol. Biol. 167:153-17.
摘要: 
摘要

近十幾年巴西蘑菇 (Agaricus blazei Murill) 被廣泛研究,生產巴西蘑菇,不論栽培產生子實體或是以液態醱酵 (submerged fermentation) 方法培養菌絲體,均須經過菌絲體生長的過程,耗時漫長,因此縮短生產所需要的時間之研究,變得更為重要。本研究目的即為挑選具有促進巴西蘑菇菌絲體生長能力之細菌,以達縮短巴西蘑菇生產時間之目標。本研究自巴西蘑菇蕈柄基部分離出21株細菌,從中挑選具促進巴西蘑菇菌絲體生長之細菌,進行細菌之菌液塗抹、除細菌菌體之菌液塗抹、對蓋氣體共同培養與巴西蘑菇菌和細菌菌株栽培介質培養試驗,以評估細菌是否促進或抑制巴西蘑菇菌絲體之生長,並建立快速篩選促進巴西蘑菇菌絲體生長能力細菌菌株之技術。

本研究結果顯示21株細菌,具有促進巴西蘑菇菌絲體生長能力者為少數,菌液培養基塗抹共同培養過程中促巴西蘑菇菌絲體生長顯著菌株僅2株 (016111與JNABM017)。比較以塗抹菌體與不含菌體之培養液塗抹共同培養結果,指出培養基共同培養試驗中細菌菌株有菌體與無菌體對巴西蘑菇菌絲體生長影響結果不一致。經試驗結果顯示其中促進菌絲體生長之菌株016111與JNABM017,及顯著抑制菌絲體生長之菌株005208與SBCK2031,此4株菌於對蓋氣體試驗中測得二氧化碳含量多寡 (6534~12664 ppm) 與菌絲生長優劣並無相關,顯示此二氧化碳含量並不會影響巴西蘑菇菌絲體的生長。另觀察到對蓋氣體共同培養中005208與SBCK2031兩細菌株處理組之巴西蘑菇菌絲有褐變之情形,但結果指出此現象與二氧化碳含量並無相關,其原因不明,可能為其他氣體或因子影響。巴西蘑菇菌與細菌共同培養於稻稈堆肥栽培介質試驗結果指出,前述2株促進菌與2株抑制菌處理兩個月後,巴西蘑菇菌絲體生質量與無菌處理對照組並無顯著差異,顯示培養皿固態培養基共同培養與菇類栽培介質之促進結果不一致。

綜合上述結果顯示,本研究欲建立培養皿固態培養基快速篩選具有促進巴西蘑菇菌絲體生長能力之細菌菌株試驗,與所採用培養皿固態培養基 (PDA+NA) 相較於菇類栽培介質 (稻稈堆肥) 之試驗,兩者養份與供給巴西蘑菇菌絲體生長之環境仍有相當大的差異,導致培養皿結果促進巴西蘑菇菌絲體生長之菌株無法於菇類栽培介質中達成促進之效果,顯示培養基之篩選方法所得之優良菌株,不能在實際栽培介質有優良之表現。未來可設計更接近栽培介質之培養基做為共同培養測試用,且除了共同培養外更需要多方測試促進菌絲體生長細菌的生理化性質,方能更快速挑選出可於實務栽培作業促進巴西蘑菇菌絲體生長之細菌。

Abstract

Agaricus blazei Murill was widely studied for a decade. No matter culture the fruit body or growth the mycelium by submerged fermentation directly, both need the process of growth the mycelium, which takes time. Therefore, the research of reducing culture time becomes important. To reduce the culture time of A. blazei, the research goal was to select microorganism that has ability to promote A. blazei mycelium growth. The research was isolated 21 microorganisms from the base of A. blazei mushroom stalk that has ability to promotes A. blazei mycelium growth. Then figure out the reason that bacteria effects A. blazei mycelium growth (promotion or inhibition) by using the result of spread plate co-culture experiment; spread plate co-culture with bacteria suspended in nutrient broth experiment; two-plate gas co-culture experiment and co-culture in mushroom culture medium (compost of straw) experiment, try to build a rapid selection method of bacteria for promoting the mycelium growth of A. blazei.

According to the study, limited microorganisms that had the ability to promote A. blazei mycelium growth in the treatments with 21 isolated microorganisms. Only 2 microorganisms (016111 and JNABM017) promote A. blazei mycelium growth for more than one period in spread plate co-culture experiment. According to the different results between spread plate co-culture experiment and spread plate co-culture with bacteria suspended in nutrient broth experiment, indicated that spread plate co-culture had different effect of A. blazei mycelium growth between bacteria and bacteria suspended in nutrient broth. Strain 016111 and strain JNABM017 were selected microorganisms that had ability to promotes A. blazei mycelium growth in the study, and strain 005208 and strain SBCK2031 had significant ability to inhibit the growth of A. blazei mycelium. In two-plate gas co-culture experiment, the growth of A. blazei mycelium did not correlate with CO2 concentration in these four strains treatments, indication that CO2 concentration (6534~12664 ppm) could not affect the growth of A. blazei mycelium. Through the experiment also observed that strain 005208 and SBCK2031 treatments will browning of A. blazei mycelium, but the result did not correlate with CO2 concentration, mycelium could possible affected by other kinds of gas or factor. The biomass of A. blazei mycelium after two month co-culture in mushroom culture medium experiment, showed that there were no significant difference between the aforementioned bacteria treatments (2 promote bacteria and 2 inhibit bacteria) and no bacteria treatment. The result indicate that there were quite big difference result between PDA+NA medium and mushroom culture medium (compost of straw).

The study used PDA+NA medium experiment to build a rapid selection method of bacteria that promoted mycelium growth of A. blazei. But according to all of the aforementioned results, showed that the bacteria that promote mycelium growth of A. blazei on PDA+NA medium can’t shows it’s promote ability in mushroom culture medium (compost of straw), indicated that there were quite big difference between the nutriment and the growth environment of PDA+NA medium and mushroom culture medium. In order to select A. blazei mycelium promotion bacteria that can use in the practical cultivation rapidly, we might design the co-culture medium more similar with mushroom culture medium (compost of straw) in the future, also besides co-culture needs to test the physiological and chemical property of promoting microorganisms.
URI: http://hdl.handle.net/11455/25621
其他識別: U0005-0808201213312600
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.