Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25637
DC FieldValueLanguage
dc.contributor黃政恆zh_TW
dc.contributor.author林亮瑩zh_TW
dc.contributor.authorLin, Liang-Yingen_US
dc.contributor.other土壤環境科學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T07:25:49Z-
dc.date.available2014-06-06T07:25:49Z-
dc.identifierU0005-0508201220060200en_US
dc.identifier.citation行政院農業委員會農糧署。2010。臺灣地區稻作種植、收穫面積及產量。 行政院環境保護署。2001。土壤污染管制標準。行政院環境保護署環署水字第0073684號令。 行政院環境保護署。2002。農地土壤重金屬調查與場址列管計畫。(EPA-90-GA13-03-90A285) 。 行政院環境保護署。2009。地下水污染管制標準。行政院環境保護署環署水字第0980003647號令。 鄒裕民、陳益榮、王明光。1998。鉻酸鹽在土壤中的吸持(二)。中國農業化學會誌。36:77–90。 Alvarez-Ayuso, E., A. Garcia-Sanchez, and X. Querol. 2007. Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. J. Hazard Mater. 142:191–198. Ashworth, D. J., and B. J. Alloway. 2008. Influence of dissolved organic matter on the solubility of heavy metals in sewage0sludge-amended soils. Commun. Soil. Sci. Plant Anal. 39:538–550. Banks, M. K., A. P. Schwab, and C. Henderson. 2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264. Bartlett, R. J., and J. M. Kimble. 1976. Behavior of Chromium in Soils: II. Hexavalent Forms. J. Environ. Qual. 5:383–386. Bermudez, G. M. A., M. Monica, I. Rodrigo, R. Pla, M. L. Pignata. 2010. Heavy metal pollution in topsoils near a cement plant: The role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations. Chemosphere 78:375–381. Beukes, J. P., J. J. Pienaar, and G. Lachmann. 2000. The reduction of hexavalent chromium by sulphite in wastewaters- An explanation of the observed reactivity pattern. Water SA. 26:393–395. Bishnoi, N. R., M. Bajaj, and N. Sharma. 2004. Adsorption of Cr(VI) from aqueous and electroplating waste water. Environ. Technol. 25: 899–905. Bolan, N. S., D. C. Adriano, R. Natesan, and B. J. Koo. 2003. Effect of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual. 32:120–128. Boehm, H. P. 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–149. CEC (Commission of the European Communities). 1983. Community bureau of reference: certified reference material (CRM) BCR No. 144–sewage sludge of domestic origin. Brussels, Luxembourg. Cheng, C.H., J. Lehmann, J.E. Thies, S. D. Burton, and M. H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37:1477–1488. Cheng, C. H., J. Lehmann, J. E. Thies, and S. Burton. 2008. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res. 113:02–27. Chen, J., D. Zhu, and C. Sun. 2007. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ. Sci. Technol. 41:2536–2541 Chiu., C. C., C. J. Cheng, T. H. Lin, K. W. Juang, and D. Y. Lee. 2009. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils. J. Hazard Mater. 161:1239-1244. Cook, R. L., and C. H. Langford. 1998. Structural characterization of a fulvic and humic acids using solid-state ramp-CP-MAS 13C nuclear magnetic resonance. Environ. Sci. Technol. 32:719–725. Deng, B., and A. T. Stone. 1996. Surface-catalyzed Cr(VI) reduction: Reactivity comparisons of different organic reductants and different oxide surfaces. Environ. Sci. Technol. 30:2484–2494. Donmez, G., Z. Aksu. 2002. Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem. 38:751–762. Elmquist, M., G. Cornelissen, Z. Kukulska, and Ö. Gustafsson. 2006. Distinct oxidative stabilities of char versus soot black carbon: implications for quantification and environmental recalcitrance. Global Biogeochem. Cycles. 20:GB2009. Erdem, M., H. S. Altundogan, A. Ozer, and F. Tumen. 2001. Cr(VI) reduction in aqueous solutions by using synthetic iron sulphide. Environ. Technol. 22:1213–1222. Fandorf, S. E., and G. Li. 1996. Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol. 30:1614–1617. Fay, M., C. Eisenmanm, S. Diwan, and C. de Rosa. 1998. ATSDR evaluation of health effects of chemicals. V. Xylense: Health effects, toxicokinetics, human exposure, and Environmental fate. Toxicol. Ind. Health. 14:571–781. Feng, X, H., L. M. Zhai, W. F. Tan, W. Zhao, F. Liu, and J. Z. He. 2006. The controlling effect of pH on oxidation of Cr(III) by manganese oxide minerals. J. Colloid Interf. Sci. 298:258 –266. Forbes, M., R. Raison, and J. O. Skjemstad. 2006. Formation, transformation and transport of black carbon(charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 370:190–206. Gardner, W. H. 1986. Water content. IN. A. Klute et al. (eds.). Methods of soil analysis. 9:493–544. Gee, G. W. and J. W. Bauder. 1986. Partical-size analysis. In: A. Klute et al. (eds.). Methods of soil analysis. 9:383–412. Geelhoed, J. S., J. C. L. Meeuseen, M. J. Roe, S. Hillier, R. P. Thomas, J. G. Farmer, and E. Paterson. 2003. Chromium remediation ore release: Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing redisue. Environ. Sci. Technol. 37:3206–3213. Gruau, G., A. Dia, G. Olivié-Lauquet, M. Davranche, and G. Pinay. 2004. Controls on the distribution of rare earth elements in shallow groundwaters. Water Res. 38:3576–3586. Grybos, M., M. Davranche, G. Gruau, and P. Petitjean. 2007. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction. J. Colloid Interface Sci. 314:590–501. Goldberg, E. D. 1985. Black carbon in the environment: properties and distribution. John Wiley and Sons, New York. Gupta, V. K., A. K. Shrivastava, and N. Jain. 2001. Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res. 35:4079–4085. Gupta, V. K., and A. Rastogi. 2008. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard Mater. 154:347–354. Hammes, K., R. J. Smernik, J. O. Skjemstad, and M. W. I. Schmidt. 2008. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl. Geochem. 23:2113–2122. Hedges, J. I., G. Eglinton, P. G. Hatcher, D. L. Kirchman, C. Arnosti, S. Derenne, R. P. Evershed, I. Kögel-Knabner, J. W. de Leeuw, R. Littke, W. Michaelis, and J. Rullkötter. 2000. The molecularly– uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31:945–958. Harvey, C., C. Swartz, A. Badruzzaman, N. Keon-Blute, W. Yu, M. Ali, J. Jay, R. Beckie, V. Neidan, D. Brandander, P. Oates, K. Ashfaque, S. Islam, H. Hemond, and M. Ahmed. 2002. Arsenic mobility and groundwater extraction in bangladesh. Sci. 298:1602–1606. Hasan, S. H., K. K. Singh, O. Prakash, M. Talat, and Y.S. Ho. 2008. Removal of Cr(VI) from aqueous solutions using agricultural waste ‘maize bran’. Technol. 152:356–365. Hsu, N. H., S. L. Wang., Y. H. Liao, S. T. Huang, Y. M. Tzou, and Y. M. Huang. 2009. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. J. Hazard Mater. 171:1066–1070. Iu, K. L., I. D. Pulford, and J. Duncan. 1981. Influence on waterlogging and lime organic matter additions on the distribution of trace metals in an acid soil: II. zinc and copper. Plant Soil. 59:327–333. James, B. R., R. J. Bartlett. 1984. Plant–soil interactions of chromium. J. Environ. Qual. 13:67–70. James. B., J. C. P., R. J. Vitale, and G. R. Mussoline. 1995. Hexavalent chromium extraction from soils: a comparison offive methods. Environ. Sci. Technol. 29: 2377–2381. Jardine, P. M., S. E. Fendorf, M. A. Mayes, I. L. Larsen, S. C. Brooks, and W. B. Bailey. 1999. Fate and transport of Hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33:2939–2944. Kashem, M. A., and B. R. Singh. 2001. Metal availability in contaminated soils: I. effect of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycling Agroecosyst. 61:247–255. Khan, A., and R. W. Puls. 2003. In situ abiotic detoxification and immobilization of hexavalent chromium. Ground Water Monit. Rem. 23:77–84. Kim, J. G., J. B. Dixon, C. C. Chusuei, and Y. Deng. 2002. Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol. 34:112–119. Kim, J. G., J. B. Dixon, C. C. Chusuei, and Y. Den. 2002. Oxidation of Cr(III) to (VI) by manganese oxides. Soil. Sci. Soc. Am. J. 66:306–315. Kim, S.D., K. S. Park, M. B. Gu. 2002. Toxicity of hexavalent chromium to Daphnia magna: influence of reduction reaction by ferrous iron. J. Hazard Mater. 93:155–164. Kimbrough, D. E., Y. Cohen, A. M. Winer, L. Crelman, C. Mabuni. 1999. A critical assessment of chromiumin the environment. Crit. Rev. Environ. Sci. Technol. 29:1–46. Knicker, H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon: A review. Biogeochem. 85:91–118. Knicker, H., 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon A review. Biogeochem. 85:91–118. Kotas, J., and Z. Stasicka. 2000. Chromium occurrence in the environment and methods of its speciation, Environ. Pollut. 107:263–283. Kozyuh, N., J. S. Tupar, and B. Goreng. 2000. Reduction and Oxidation Processes of Chromium in Soils. Environ. Sci. Technol. 34: 112–119. Kuhlbush, T. A. J. 1998. Black carbon and carbon cycle. Sci. 280:1903–1903. Kuzyakov, Y., I. Subbotina, H. Chen, B. Irina, and X. Xu. 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 41:210–219. Lehmann, J., J. O. Skjemstad, S. Sohi, J. Carter, M. Barson, P. Falloon, K. Coleman, P. Woodbury, and E. Krull. 2008. Australian climate-carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1:832–835. Lee, D. Y., J. C. Huang, K. W. Juang, L. Tsui. 2005. Assessment of phytotoxicity of chromium in flooded soils using embedded selective ion exchange resin method. Plant Soil. 277:97–105. Lee, D. Y., Y. N. Shih, H. C. Zheng, C. P. Chen, K. W. Juang, J. F. Lee, and L. Tsui. 2006. Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium(VI) phytotoxicity. Plant Soil. 281:87–96. Li, Z., and R. S. Bowman. 2001. Retention of inorganic oxyanions by organokaolinite. Water Res. 35:3771–3776. Liang, B., J. Lehmann, S. P. Sohi, J. E. Thies, B. O''Neill, L. Trujillo, J. Gaunt, D. Solomon, J. Grossman, E. G. Neves, and J. L. Flavio. 2010. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 41:206–213. Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. Neill, J. O. Skjemstad , J. Thies, F. J. Luizao, J. Petersen, and E. G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Sci. Soc. Am. J. 70:1719–1730. Liang, B., J. Lehmann, D. Solomon, S. Sohi, J. E. Thies, J. O. Skjemstad, F. J. Luizao, M. H. Engelhard, E. G. Neves, and S. Wirick. 2008. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta. 72:6069–6078. Lorenz, K., C. M. Preston, E. Kandeler. 2006. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Geodema 130:312–323. Major, J., J. Lehmann, M. Rondon, and C. Goodale. 2010. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology. 16:1366–1379. Makdisi, R.S. 1992. Tannery wastes definition, risk assessment, and cleanup options, Berkeley, California. J. Hazard Mater. 29:79–96. Masiello, C. A. 2004. New directions in black carbon organic geochemistry. Mar. Chem. 92:201–213. McKeague, J. A., and J. H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating classes of soils. Can. J. Soil Sci. 45:49–62. Methra, O. P. and M. L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7:317–327. Mohan, D., and C. Jr. 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard Mater. 137:762–811. Montes-Moran, M. A., D. Suarez, J. A. Menendez, and E. Fuente. 2004. On the nature of basic sites on carbon surfaces: an overview. Carbon 42:1219–1225. Mor, S., K. Ravindra, and N. Bishnoi. 2007. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresour. Technol. 98:954–957. Nakayama, E., T. Kuwamoto, S. Tsurubo, and T. Fujinama. 1981. Chemical speciation of chromium in sea water. Part 2. Effects of manganese oxides on reducible organic materials on the redox processes of chromium. Anal. Chim. Acta. 130:401–404. Nakayasu, K., M. Fukushima, K. Sasaki, S. Tanaka, and H. Nakamura. 1999. Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors. Environ. Toxicol. Chem. 18:1085–1090. Natale, F. D., A. Lancia, A. Molino, and D. Musmarra. 2007. Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J. Hazard Mater. 145:381–390. Nehrenheim, E., and J. P. Gustafsson. 2008. Kinetic sorption modeling of Cu, Ni, Zn, Pb and Cr ions to pine blast furnace slag by using batch experiments. Bioresour. Technol. 99:1571–1577. Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961–1010. In D. L. Sparks, A. L. Page, P. A. Helmake, R. H. Loeppert, P. N. Soltanopour, M. A. Tabatatai, C. T. Johnston, and M. E. Summer eds. Method of Soil Analysis, Part 3. ASA and SSSA, Madison, WI, USA. Neumann, R. B., K. N. Ashfaque, A. B. M. Badruzzaman, M. A. Ali, J. K. Shoemaker, and C. F. Harvey. 2010. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 3:46–52. Niu, H., and B. Volesky. 1999. Characteristics of gold biosorption from cyanide solution. J. Chem. Technol. Biotechnol. 74:778–784. Niu, H., and B. Volesky. 2003. Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy 71:209–215. Oste, L. A., E. J. M. Temminghoff, and W. H. Vanriemsdijk. 2002. Solid-solution portioning of organic matter in soils as influenced by an increase in pH or Ca concentration. Environ. Sci. Technol. 36:208–214. Paolis, E. D., and J. Kukkonen. 1997. Binding of organic pollutaants to humic material. Chempsphere 34:1693–1704. Pappas, C. P., S.T. Randall, and J. Sneddon. 1990. An atomic emission study of the removal and recovery of chromiumfromsolution by an algal biomass (Chlorella Vulgaris). Talanta 37:707–710. Patterson, R., S. Fendorf. 1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environ. Sci. Technol. 31:2039–2044. Piau, C., and T. J. Aspray. 2011. Effectiveness and longevity of a green/food waste derived compost packed column to reduce Cr(VI) contamination in groundwater. J. Hazard Mater. 186:1249–1253. Pignatello, J. J., S. Kwon, and Y. Lu. 2006. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ. Sci. Technol. 40:7757–7763. Pradhan, J., S. N. Das, and R. S. Thakur. 1999. Adsorption of Hexavalent Chromium from Aqueous Solution by Using Activated Red Mud. J. Colloid Interface Sci. 217:137–141. Preston, C. M., M. W. I. Schmidt. 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. J. Geophys. Res. Biogeosci. 3:397–420 Rai, D., J. M. Zachara, L. E. Eary, D.C. Girvin, D. A. Moore, C. T. Resch, B. M. Sass, and R. L. Schmidt. 1986. Geochemical behavior of chromium species, Interim Report Electric Power Research Institute (EPRI) EA EA-4544, ERRI, Palo Alto, CA. Rai, D., B. M. Sass, and D. A. Moore. 1987. Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorganic Chem. 26:345–349. Rhoades, J. D. 1982. Cation Exchange Capacity. p. 149–157. In Page et al., (ed.) Methods of soil analysis. Part II. 2nd edition. Richard, F. C., and A. M. Bourg. 1991. Aqueous geochemistry of chromium: A review. Water Res. 25:807–816. Rosa, J. M. D. L., H. Knicker, E. L. Capel, D. A. C. Manning, J. A. G. Perez, and F. J. G. Vila. 2007. Direct detection of black carbon in soils by-GC/MS, 13C NMR specvroscopy and thermogravimetric techniques. Soil Sci. Soc. Am. J. 72:258–267. Samadi, M. T., A. R. Rahman, M. Zarrabi, E. Shahabi, and F. Sameei. 2009. Adsorption of chromium (VI) from aqueous solution by sugar beet bagasse-based activated charcoal. Environ. Technol. 30:1023–1029. Samanta B. K. K., and A. K. Kunda. 2000. Remove of Cr(VI) from aqueous solution by using low cost adsorbent. Indian J. Environ. Prot. 20:754–760. Schmidt, R. L., 1984. Thermodynamic properties and environmental chemistry of chromium. Battelle Pacific Northwest Laboratory Report, PNL–4481, Richland, WA. Schmidt, M. W. I., and A. G. Noack. 2000. Black carbon in soils and sediments: Analysis, distribution, implication, and current challenges. Global. Biogeochem. Cy. 14:777–793. Seaman, J. C., P. M Berttsch, and L. Schwallie. 1999. In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environ. Sci. Technol. 33:938–944. Shen, S. Y., S. L. Wang, S. T. Huang, Y. M. Tzou, and J. H. Huang. 2010. Biosorption of Cr(VI) by coconut coir: Spectroscopic investi- gation on the reaction mechanism of Cr(VI) with lignocellulosic material. J. Hazard Mater. 179:160–165. Shriver, D. F., P. W. Atkins, and C. H. Langford. 1994. Inorganic chemistry. 2th ed. Oxford University Press, Oxford. Stepniewska, Z., K. Bucior, and R. P. Bennicelli. 2004. The effects of MnO2 on sorption and oxidation of Cr(III) by soils. Geoderma 122:291–296. Stewart, R. 1964. Oxidation Mechanisms. Benjamin: N. Y., Chapter 5. Strelko, V. Jr., D. J. Malik, and M. Streat. 2002. Characterisation of the surface of oxidized carbon adsorbents. Carbon 40:95–104. Sturges, S.G., Jr., P. McBeth, Jr., and R.C. Pratt. 1992. Performance of soil flushing and groundwater extraction at the United Chrome Superfund site. J. Hazard Mater. 29:59–78. Stumm, W., and J. J. Morgan. 1996. Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd ed. Wiley & Sons. New York. Su, C., and R. D. Ludwig. 2005. Treatment of Hexavalent Chromiumin Chromite Ore Processing SolidWaste Using a Mixed Reductant Solution of Ferrous Sulfate and Sodium Dithionite. Environ. Sci. Technol. 39: 6208–6216. Suksabye P., P. Thiravetyan, W. Nakbanpote, and S. Chayabutra. 2007. Chromium removal from electroplating wastewater by coir pith. J. Hazard Mater. 141:637–644. Sumathi, K. 2005. Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresour. Technol. 96:309–316. Thomas, G.W. 1996. Soil pH and soil acidity. p. 475-490. In D.L Sparks, A.L. Page, P.A. Helmake, R.H. Loeppert, P.N. Soltanopour, M.A. Tabatatai, C.T. Johnston, and M.E. Summer eds. Method of Soil Analysis, Part 3. ASA and SSSA, Madison, WI, USA. Tokunaga, T. K., J. Wan, A. Lanzirotti, S. R. Sutton, M. Newville, and W. Rao. 2007. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Environ. Sci. Technol. 41:4326–4331. Tokunaga, T. K., J. Wan, M. K. Firestone, T. C. Hazen, K. R. Olson, D. J. Herman, and A. L. S. R. Sutton. 2003. In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. J. Environ. Qual. 32: 1641–1649. Wang, X. S., L. F. Chen, F. Y. Chen, W. Y. Wan, and Y. J. Tang. 2010. Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. J. Hazard Mater. 175:816–822. Wang, X. S., Y. P. Tang, and S. R. Tao. 2009. Kinetics, equilibrium and thermo-dynamic study on removal of Cr(VI) from aqueous solutions using low-cost adsorbent alligator weed. Chem. Eng. J. 148:217–225. Wang, X., Z. Li, and C. Sun. 2008. Removal of Cr(VI) from aqueous solutions by low cost biosorbents: Marine macroalgae and agricultural by-products. J. Hazard Mater. 153:1176–1184. Wang, X. S., Z. Z. Li, and S. R. Tao. 2009. Removal of chromium (VI) from aqueous solution using walnut hull. J. Environ. Manage 90:721–729. Wittbrodt, T., and C. D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29:1–25. Yang, Y., G. Sheng. 2003. Enhanced pesticide sorption by soils containing particulate matter from crop burns. Environ. Sci. Technol. 37:3635–3639. Yingxu, C., C. Yiyi, L. Qi, H. Ziqiang, H. Hong, and W. Jianyang. 1997. Factors affecting Cr(III) oxidation by manganese oxides. Pedosphere 7:185–192. Yu, P. F., K. W. Juang, and D. L. Lee. 2004. Assement of the phytotoxicity of chromium in soils using the selective ion exchange resin extraction method. Plant Soil. 258:333–340. Zhao, D., A. K. SenGupta, and L. Stewart. 1998. Selective removal of Cr(VI) oxyanions wuth a new anion exchanger. Ind. Eng. Chem. Res. 37:4383–4387. Zhu, D. Q., ans J. J. Pignatello. 2005. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci. Technol. 39:2033–2041.en_US
dc.identifier.urihttp://hdl.handle.net/11455/25637-
dc.description.abstract作物殘體經由燃燒後所產生之含炭物質,具有比表面積高、不易分解及良好的陰、陽離子交換容量,若施用於土壤中將會對於土壤基本性質、重金屬的移動和有機分子傳輸等具有影響。鉻在環境中主要以三價鉻﹝Cr(III)﹞及六價鉻﹝Cr(VI)﹞的形態存在,其中Cr(VI)的毒性和移動性都高於Cr(III)。現今受鉻污染之土壤常用的整治方法為添加化學還原劑(如,硫化鐵、亞鐵離子和零價鐵)將Cr(VI)還原為Cr(III),近年已有研究藉由添加炭化之生物性資材還原Cr(VI),然而土壤環境中存在許多變因,舉如土壤pH、有機質、氧化物及陰陽離子等,皆會影響炭化之生物性資材還原Cr(VI)之能力,因此本研究目的為探討添加稻稈生質炭(Rice-straw biochar; RB)到土壤中對土壤固定Cr(VI)之影響。 本研究選用兩種土壤,分別為陳厝寮系土壤(Chentsuo; Ce)(台中縣大肚鄉)及萬合系土壤(Wanho; Wa)(彰化縣埤頭鄉),並添加5%的稻稈生質炭,以固液比為50 g L-1添加稻稈生質炭的土壤與10 mg L-1Cr(VI)溶液於pH 2.0-7.0以及未調整pH的環境中進行動力學反應。等溫吸附結果顯示,添加稻稈生質炭與否的陳厝寮和萬合系土壤在未調整pH的且低濃度Cr(VI)時,稻稈生質炭所固定的Cr(VI)佔土壤總固定量較大,顯示在低濃度的Cr(VI)污染情況時,土壤對於Cr(VI)的固定能力較佳。於動力學及土壤溶液中可溶性有機碳結果顯示,隨著溶液pH增加,陳厝寮及萬合系土壤對於Cr(VI)之固定和還原量隨之下降,可溶性有機碳濃度亦有上升趨勢。當溶液pH 7.0時,Cr(VI)仍有被還原的現象發生,表示可溶性有機碳將Cr(VI)還原為Cr(III)。當pH< 3.0的反應中,添加稻稈生質炭的土壤對Cr(VI)之固定且還原有抑制的現象。土壤陰離子溶出量結果顯示,添加稻稈生質炭的陳厝寮系土壤於pH 2.0-7.0溶液環境中,Cl-在pH 2.0-3.0濃度高於pH 4.0-7.0,萬合系土壤亦有相同結果;SO42-、NO3-和PO43-的溶出量在不同pH的環境中變化則不明顯,而萬合系土壤隨著 pH的降低,溶液中PO43-相對上升。陰離子競爭對稻稈生質炭固定Cr(VI)實驗中,H2PO4-對稻稈生質炭競爭Cr(VI)的競爭能力高於Cl-、SO42-和NO3-,競爭能力依序分別為H2PO4- > NO3- ≅ SO42- > Cl-。未來於土壤添稻稈生質炭若應用於低濃度Cr(VI)污染之土壤復育,對於Cr(VI)的固定和還原量是有影響性的。zh_TW
dc.description.abstractChromium in soils exist as Cr(III) cation or Cr(VI) oxyanion forms. Cr(III) is an essential trace element for living organisms, Cr(VI) is toxic, carcinogenic, mutagenic, and teratogenic. The biochar derived from rice straw possessed of high surface area and cation exchange capacity is hard to be decomposed by organisms and plays an important role in the retention of organic and inorganic pollutants. The purpose of this study was to investigate the effect of amendment of rice-straw biochar (RB) into soil on the immobilization of Cr(VI) by mixing 5% RB with Chentsuo (Ce) and Wanho (Wa) soils at pH 2.0-7.0. The isothermal results showed that Cr(VI) was significantly immobilized by RB of the mixtures of the biochar and soils without adjustment pH. However, the increasing pH values resulted in increasing the dissolved organic carbon and in undermining the ability in immobilization and reduction of Cr(VI) by the biochar and soil mixtures. The reduction reaction of Cr(VI) to Cr(III) still had occurred at pH 7.0, supposing that the increasing dissolved organic carbon reduced Cr(VI) to Cr(III). Nevertheless, the immobilization and reduction of Cr(VI) was inhibited by RB of the mixtures under pH 3.0 due to anion competition. The dissolved chloride was increased with the deceasing pH value in both Ce and Wa mixtures. Among the nearly varied concentrations of anions (i.e. sulfate, nitrate, and phosphate) with the pH change in the Ce and Wa mixtures, the concentration of phosphate increased with decreasing pH in the Wa mixtures. Phosphate would more strongly inhibit Cr(VI) from the reduction than other anions (i.e. chloride, sulfate, and nitrate). The results showed that the amendment of RB could enhance Cr(VI) reduction in soils. However, with increaseing pH, the immobilization and reduction capacity of Cr(VI) decreased. Therefore, when rice-straw biochar is used in the remediation of Cr(VI)-contaminated soils for immobilized and redox amount of Cr(VI) is influential.en_US
dc.description.tableofcontents摘要 ii 表次 viii 圖次 ix 第一章、前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章、前人研究 3 2.1 生質炭之概述 3 2.1.1 生質炭的來源 3 2.1.2 生質炭的特性 5 2.2 鉻的概述 8 2.3 鉻的氧化還原反應 8 2.3.1 pH及Eh 8 2.3.2 氧化物 12 2.3.3 有機質 12 第三章、材料與方法 15 3.1 供試土壤 15 3.2 土壤基本性質分析 15 3.2.1 土壤水分含量 15 3.2.2 土壤陽離子交換容量 15 3.2.3 土壤反應pH值 16 3.2.4 土壤質地 16 3.2.5 土壤有機碳 17 3.2.6 可溶性有機碳測定 17 3.2.7 王水全量法 17 3.2.8 無定型鐵、鋁 18 3.2.9 游離性鐵、鋁 18 3.3 稻稈生質炭的製備 19 3.4 稻稈生質炭基本性質分析 19 3.4.1 陽離子交換容量 19 3.4.2 元素分析 20 3.4.3 比表面積測定 20 3.4.4 13C核磁共振光譜分析 20 3.5 等溫吸附實驗 21 3.6 動力學實驗 21 3.7 陰離子競爭 22 3.8 土壤溶液中可溶性有機碳 22 3.9 Cr(VI)之脫附 23 3.10 Cr的定量分析 23 3.10.1 ICP- AES測定總鉻 23 3.10.2 Cr(VI)的測定 23 3.11 一階動力學模式 24 3.12 等溫吸附平衡常數計算 24 第四章、結果與討論 25 4.1 土壤基本性質 25 4.2 稻稈生質炭基本性質 28 4.2.1 13C核磁共振光譜分析 29 4.3 等溫吸附實驗 30 4.3.1不同比例之稻稈生質炭於未調整pH對Cr(VI)之等溫吸附 30 4.3.2不同比例之稻稈生質炭於pH 4對Cr(VI)之等溫吸附 34 4.4 pH的影響 37 4.5 動力學實驗 38 4.5.1 稻稈生質炭固定Cr(VI) 42 4.5.2 土壤固定Cr(VI) 46 4.5.3 土壤添加稻稈生質炭固定Cr(VI) 53 4.6 土壤溶液中可溶性有機碳含量變化 60 4.7 陰離子的影響 62 第五章、結論 65 第六章、參考文獻 66zh_TW
dc.language.isozh_TWen_US
dc.publisher土壤環境科學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0508201220060200en_US
dc.subject稻稈生質炭zh_TW
dc.subjectRice-straw biocharen_US
dc.subject六價鉻zh_TW
dc.subject固定zh_TW
dc.subject還原zh_TW
dc.subject陰離子zh_TW
dc.subjectCr(VI)en_US
dc.subjectimmobilizationen_US
dc.subjectreductionen_US
dc.subjectanionen_US
dc.title添加稻稈生質炭對土壤固定Cr(VI)的作用zh_TW
dc.titleEffects of rice-straw biochar on the immobilization of Cr(VI) in soilsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:土壤環境科學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-101-7098039019-1.pdf1.36 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.