Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25638
標題: 研究根瘤菌對田菁吸收鹽分能力的影響
The effect of inoculation of rhizobia on the salt uptake of sesbania cannabia (Retz.) Pers.
作者: 黃煜誠
Huang, Yu-Chen
關鍵字: 根瘤菌;sesbania;處理鹽害;田菁;植生復育;desalination;rhizobia;phytodesalination
出版社: 土壤環境科學系所
引用: 中國治理荒漠化基金會。 2011。 e-alkali soil improvement and cultivation of Sesbania。 中華肥料協會。2005。作物施肥手冊。國家圖書館。 侯寬昭。1982。中國種子植物科屬詞典。新華書店北京。 洪美華。2002。台灣本土豆科植物根瘤菌分離及特性研究。國立中興大學土壤環境科學系碩士論文。 陳書泉。1976。桃園縣土壤調查報告。中國農村復興聯合委員會補助。第33期:83-84。 連大進、吳昭慧。農委會台南區農業改良場。 連大進。1992。 田菁對土壤改良功效與栽培法台南區農業專訊。第2期:4-6。 張東炯。 2011。以田菁綠肥永續經營休耕水田。高苑技術學院土木系。 黃裕銘。 2011。國立中興大學土壤調查試驗中心分析資料評估報告。 潘佳辰。2013。豇豆根瘤菌篩選、固氮能力評估培養基比較及對豇豆生長影響之研究。國立中興大學土壤環境科學系碩士論文。 Ahmad, N., R. H. Qureshi, and M. Qadir. 1990. Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degradation & Rehabilitation 2, 277-284. Ahmad, M., Z. A. Zahir, H. N. Asghar, and M. Arshad. 2011. The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol. DOI 10.1007/s13213-011-0380-9. Ammari, T. G., A. B. Tahboub, H. M. Saoub, B. I. Hattar, and Y. A. Al-Zu’bi. 2008. Salt removal efficiency as influenced by phyto-amelioration of salt-affected soils. J Food Agr Environ. 6, 456–460. Ammari, T. G., S. S. Al-Hiary, and M. Al-Dabbas. 2013. Reclamation of saline calcareous soils using vegetative bioremediation as a potential approach. Archives of Agronomy and Soil Science 59, 367-375. Athar, H. R., and M. Ashraf. 2009. Strategies for Crop Improvement Against Salinity and Drought Stress: An Overview. Salinity and Water Stress 1-16. Ashraf, M.. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora. 199, 361–376. Shilajit Barua, S., S. Tripathi, A. Chakraborty, S. Ghosh, and Kalyan Chakrabarti. 2011. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils. Microbiological Research 2011. Batra, L., A. Kumar, M. C. Manna, and R. Chhabra. 1997. Microbiological and chemical amelioration of alkaline soil by growing Karnal grass and gypsum application. Experimental Agriculture 33, 389–397. Blumwald, E., G. S. Aharon, and M. P. Apase. 2000. Sodium transport in plant cells. Biochimica et Biophysica Acta 1465, 140–151. Boyle, M., W. T. Frankenberger Jr, and L. H. Stolzy. 1989. The influence of organic matter on aggregation and water infiltration. Journal of Production Agriculture 2, 290-299. Brady, N. C., and R. R. Weil, 2008. The nature and properties of soils. Pearson education international 4. Bray, R. H., and L. T. Kurtz, 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 50, 39-45. Bremner, J.M. and C. S. Mulvancy, 1982. Method of Soil Analysis 2, 595-624. Chhabra, R.. 1977. Reclaiming effect of rice grown in sodic soils. Soil Science. 124, 49-55. Cruz, A. S., M. Acosta, A. Rus, and M. C. Bolarin. 1999. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol. Biochem. 37, 65-71. Dan, T. H., and H. Brix. 2007. The influence of temperature, light, salinity and seed pre-treatment on the germination of Sesbania sesban seeds. African Journal of Biotechnology 6, 2231-2235. Doll, E. C., and R. E. Lucas. 1973. Testing soil for potassium, calcium and magnesium. P. 133-152. In L. M. Walsh and J. D. Beaton (ed.) Soil Testing and Plant Analysis. Soil Sci. Soc. Of Am., Madison, WI. Evelin, H., B. Giri, and R. Kapoor. 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22, 203–217. Ghafoor, A., G. Murtaza, M. Z. Rehman, Saifullah, and M. Sabir. 2012. Reclamation and salt leaching efficiency for tile drained saline-sodic soil using marginal quality water for irrigating rice and wheat crops. Land Degrad. Develop. 23, 1–9. Grattana, S. R., and C.M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae. 78, 127-157. Jha, B., I. Gontia, and A. Hartmann. 2011. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 10.1007/s11104-011-0877-9. Jha, Y., R. B. Subramanian, and S. Patel. 2011. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33, 797–802. Jlassi, A., W. Zorrig, A. E. Khouni, A. Lakhdar, A. Smaoui, C. Abdelly, and M. Rabhi. 2012. Phytodesalination of a moderately salt-affected soil by Sulla Carnosa. International Journal of Phytoremediation 15, 398-404. Kirkby, E. A., and A. H. Knight. 1977. Influence of the Level of Nitrate Nutrition on Ion Uptake and Assimilation, Organic Acid Accumulation, and Cation-Anion Balance in Whole Tomato Plants. Plant Physiol. 60, 349-353. McLean, E. O.. 1982. Soil pH and lime requirement. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2, 2nd. ed. ASA-SSSA, Madison, Wisconsin, USA 12, 199-223. Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural water. Analyt. Chim. Acta 27, 31-36. Munns, R.. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167, 645–663. Munns, R., and M. Tester. 2008. Mechanisms of salt tolerance. Annu. Rev. Plant Biol. 59, 651-681. Niu, X., R. A. Bressan, P. M. Hasegawa, and J. M. Pardo. 1995. Ion homeostasis in NaCl environments. Plant Physiology 109, 735–742. Ohyama, T., M. Ito, K. Kobayashi, S. Araki, S. Yasuyoshi, O. Sasaki, T. Yamazaki, K. Soyama, R. Tanemura, and Y. Mizuno. 1991. Analytical procedures of N, P, K contents in plant and manure materials using H2SO4-H2O2 Kjeldahl digestion method. Bulletin of the Faculty of Agriculture-Niigata University. Oster, J. D., I. Shainberg, and I. P. Abrol. 1996. Reclamation of salt affected soils. In Soil Erosion, Conservation and Rehabilitation, Agassi M(ed.). Marcel Dekker: New York 315-352. Pierce, W.S., Higinbotham. 1970. Compartments of fluxes of K+ and Cl- in Avena coleoptile cells. Plant Physiology 46, 666–673. Pitman, M.G., A. C. Coutrice, and B. Lee. 1968. Comparison of potassium and sodium uptake by barley roots at high and low salt status. Australian Journal of Biological Science. 21, 871–881. Qadir, M., R. H. Qureshi, and N. Ahmad. 1996. Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma 74, 207–217. Qadir, M., R. H. Qureshi, and N. Ahmad. 1997. Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Research and Rehabilitation 11, 343-352. Qadir, M., A. Ghafoor, and G. Murtaza, 2000. Amelioration strategies for saline soils: a review. Land Degrad. Dev. 11, 501–521. Qadir, M., and J. D. Oster. 2002. Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrigation Science 21, 91-101. Qadir, M., R.H. Qureshi1, and N. Ahmad. 2002. Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use and Management 18, 381-385. Qadir, M., D. Steffens, F. Yan, and S. Schubert. 2003. Proton release by N2-fixing plant roots: a possible contribution to phytoremediation of calcareous sodic soils. J. Plant Nutr. Soil Sci. 166, 14-22. Qadir, M., and J. D. Oster. 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 323, 1-19. Rabhi, M., O. Talbi, A. Atia, C. Abdelly, and A. Smaoui. 2008. Selection of a halophyte that could be used in the bioreclamation of salt-affected soils in arid and semi-arid regions. Biosaline Agriculture and High Salinity Tolerance 241-246. Rabhi, M., C. Hafsi, A. Lakhdar, S. Hajji, Z. Barhoumi, M. H. Hamrouni, C. Abdelly, and A. Smaoui. 2009. Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr. J. Ecol. 47, 463–468. Rabhi,M., S. Ferchichi, J. Jouini, M. H. Hamrouni, H. W. Koyro, A. Ranieri, C. Abdelly, and A. Smaoui. 2010. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology 101, 6822–6828. Rabhi M., S. Ferchichi, J. Jouini, M. H. Hamrouni, H. W. Koyro, A. Ranieri, C. Abdelly, and A. Smaoui. 2010. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour. Technol., 101, 6822–6828. Ravindrana, K. C., K. Venkatesana, V. Balakrishnana, K.P. Chellappana, and T. Balasubramanian. 2007. Restoration of saline land by halophytes for Indian soils. Soil Biology & Biochemistry 39, 2661–2664. Rhodes, J.D.. 1982. Soluble salts. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2, 2nd. ed. ASA and SSSA, Madison, WI. 167-180. Robbins, C. W.. 1986a. Carbon dioxide partial pressure in lysimeter soils. Agronomy Journal. 78, 151-158. Robbins, C. W.. 1986a. Sodic calcareous soil reclamation as affected by different amendments and crops. Agronomy Journal 78, 916–920. Thao, H., T. Yamakawa, K. Shibata, P. Sarr, and A. Myint. 2008. Growth response of komatsuna (Brassica rapa var. peruviridis) to root and foliar applications of phosphite. Plant and Soil 308, 1-10. Uyanoz, R., and U. Karaca. 2011. Effects of different salt concentrations and Rhizobium inoculation (native and Rhizobium tropici CIAT899) on growth of dry bean (Phaseolus vulgaris L.). European Journal of Soil Biology 2011, 1-5. Vaneechoutte, M., P. K. mpfer, T. D. Baere, E. Falsen,and G. Verschraegen. 2004. Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. International Journal of Systematic and Evolutionary Microbiology 54, 317–327. Vincent, J. M.. 1970. A manual for the Pratical Study of Root-Nodule Bacteria. IBP Handbook No. 15, black well Sci., Oxford, Great Britian. Wu, Y., R. Liu, Y. Zhao, P. Li, and C. Liu. 2009. Spatial and seasonal variation of salt ions under the influence of halophytes, in a coastal flat in eastern China. Environ Geol. 57, 1501–1508. Zhao, K.F.. 1991. Desalinization of saline soils by Suaeda salsa. Plant Soil 135, 303–305. Zhang, J. L., T. J. Flowers, and S. M. Wang. 2010. Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326, 45–60. Zorrig, W., M. Rabhi, S. Ferchichi, A. Smaoui, and C. Abdelly. 2012. Phytodesalination: a Solution for Salt-affected Soils in Arid and Semi-arid Regions. Journal of Arid Land Studies 22, 299 -302.
摘要: 
全球鹽害土壤面積持續增加而且對溫網室農業活動越來越有密切關係。因此溫網室農業期望能有一個有效且低成本的鹽害土壤整治方法。田菁被認為是一個良好的熱帶綠肥作物,而且有快速生長及吸收大量鹽分的潛力。此論文分成四個階段,探討田菁在有無接種根瘤菌的情況下移除鹽分效用。
在第一階段從桃園、南投、彰化等地區的溫室採集二十四個土壤樣品分析土壤化學特性。結果顯示EC值並不是主要限制植物生長因子,主要原因為養分不平衡,特別是土壤中累積高含量的有效性NO3-1-N、 Ca、 Mg、 K或 Na。而鹽分對EC的相關性順序為NO3-N (R2=0.8974) > Na (R2=0.8906) > Mg (R2=0.6505) > Ca (R2=0.6035) > K (R2=0.1811) > NH4-N (R2=0.0081),且對於前四種離子顯著差異P值均<0.001。
在第二階段,是有無接種根瘤菌的複因子試驗(由生長於沿海的田菁篩選出),及添加氯化鈉調整不同鹽度(2、4、6、8、及12 dS m-1)。田菁盆栽試驗是在溫室進行有四重複,並且在種植後的四十天由田菁根部的根瘤篩出根瘤菌。結果顯示接種外源根瘤菌減少根瘤生成,特別是EC值高於6 dS m-1。然而接種處理會增加地上部的氯離子濃度,但只有在低鹽度處理下增加硫酸根的濃度。種植田菁的確能大量降低土壤EC值,特別是減少對土壤鈉與鉀的濃度。在二十五天前增加鹽度的處理會顯著降低植株高度,但在四十天時則沒有統計上的顯著差異是由於所有的處理EC值均小於2 dS m-1,甚至EC12的處理。
在第三階段,兩種不同驗度處理(BK未添加及EC12)及有無接種由第二階段EC2及EC12處理所篩選出的原土根瘤菌菌A (Rhizobium sp. R8-557) 和菌B (Rhizobium sp. R55)。在此階段有五處理分別為BK、 BK+A、BK+B、EC12+A、及EC12+B。結果顯示除了EC12+B的處理之外,有接原土根瘤菌增加50%以上的根瘤數,且在株高及乾重也反應出顯著增加。然而,第三十天在EC12+B的土壤中Ca、Mg、Na、Cl-1及 SO4-2濃度比EC12+A處理顯著較低。在耐EC試驗中顯示菌B比菌A有較高的耐鹽性,此結果指出接種高耐鹽性的根瘤菌不能增加田菁生長但有效增加鹽害移除。
在第四階段為在種植花溫室的田間試驗包含BK和BK+A的處理。結果顯示土壤EC大量降低,但是BK+A的處理降低EC程度較小,可能是由於接種菌A是由EC2 dS m-1篩出並不適合生存於原田間土壤EC4 dS m-1。
本試驗顯示田菁是一種在鹽害土壤良好的植生復育植物,而且接種根瘤菌必須接種原土篩出的原生菌種,否則可能會有負面效果產生。

The area of salt-affected soil has been increased worldwide and concerning more on housing agriculture activities. An effective and low input method on the remediation of salt-affected soil is expecting, especially demanded for the housing agriculture. Sesbania has been known as a good tropic green manure for its fast growth, it also has high potential in salt uptake. This thesis is divided into four sections to study the efficiency of sesbania (sesbania cannabia (Retz.) Pers.) on desalination of salt-affected soils with or without inoculation of rhizobia.
In the first phase 24 soil samples were collected from Taoyuan, Nanto, and Changhua counties’s greenhouses to analyze soil chemical properties. Results showed that electric conductivity (EC) is not the main cause on plant growth limiting factor, the main causes are the nutrient unbalances, especially on high accumulation of available NO3-1-N, Ca, Mg, K, or Na in soils. The correlation order of salts on EC is NO3-N (R2=0.8974) > Na (R2=0.8906) > Mg (R2=0.6505) > Ca (R2=0.6035) > K (R2=0.1811) > NH4-N (R2=0.0081),and the significance p values are all <0.001 for the first four ions.
In the second phase, a factorial experiment with rhizobia (selected from sesbania grown in sea coast inoculation or not) and greenhouse spiking NaCl into different EC levels (2, 4, 6, 8, and 12 dS m-1). The sesbania pot experiment was conducted under net house with 4 replications. The rhizobia were also screened from the sesbania root nodules at 40 days after seeding. Results showed that the inoculation of nonnative rhizobia reduced the formation of root nodules, especially as the EC higher than 6 dS m-1. However, the inoculation increased the Cl-1 concentration of shoot, but increase SO4-2 concentration only at low EC treatments. The plantation of sesbania really dramatically reduced soil EC, especially reducing on soil Na and K concentrations. Increasing soil EC significantly reduced sesbania plant height before 25 days after seeding (DAS), but no statistical difference at 40 DAS due to the soil EC all reduced to lower than 2 dS m-1, even the EC12 treatment.
In the third phase, two soil EC levels (BK with no spiking and EC12) inoculation with rhizobia screened from the second phase as inoculants A (Rhizobium sp. R8-557) and B (Rhizobium sp. R55) from EC2 and EC12 treatments with no inoculation of native rhizobium. In this phase the five treatment are BK, BK+A, BK+B, EC12+A, and EC12+B. The results showed that the inoculation of these two native inoculants increased the root nodules more than 50 % except the EC12+B treatment. Accordingly, that responded to the plant height and dry weight of sesbania significantly increased except EC12+B treatment. However, the concentrations of soil Ca, Mg, Na, Cl-1, and SO4-2 in EC12+B treatment were significantly lower than those in EC12+A treatment at 30DAS. In EC tolerance experiment showed that B inoculant is more tolerant than A inoculant to high EC. This result indicates that the inoculation of high EC tolerant rhizobium may not increase the sesbania growth, but readily increase it salt removal.
The fourth experiment only BK and BK+A treatments was conducted in a flower growing green house. Results showed that the soil EC was dramatically reduced, and the reduced level of BK+A was lower. This may be due to the inoculants screened form EC2 soil will be not competitive in the soil with original EC at 4 dS m-1.
The conclusion could be droved that the sesbania is a good phytoremediation plant for salt-affected soils, and the inoculation of rhizobium should be from the native induced ones, otherwise negative effect may be found.
URI: http://hdl.handle.net/11455/25638
其他識別: U0005-0908201315193300
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.