Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25641
DC FieldValueLanguage
dc.contributor王尚禮zh_TW
dc.contributorShan-Li Wangen_US
dc.contributor.author陳科熙zh_TW
dc.contributor.authorChen, Ke-Shien_US
dc.contributor.other土壤環境科學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T07:25:52Z-
dc.date.available2014-06-06T07:25:52Z-
dc.identifierU0005-1708201200493900en_US
dc.identifier.citation沈盈嬛。2009。椰殼衍生之生質炭對六價鉻之吸附和還原轉化作用,碩士論文,中興大學,台中。 林素緣。1991。抗生素市場調查。生物技術開發中心。 林國煌、郭進安。1978。藥物化學藥論-下冊。合記圖書出版社。 陳德輝。1999。常用的抗生素。合記圖書出版社。 陳岱全、陳德輝。1978。藥理學。合記圖書出版社。 陳信安。2012。利用二氧化鈦光催化降解水中四環素之研究,碩士論文,中興大學,台中。 陳俊位、林俊義。2000。彩色海芋細菌性軟腐病防治方法之探討。植物病理學會刊。9 : 107-114。 許乃樺。2008。稻草製成之生質炭對六價鉻之吸附和還原轉化作用,碩士論文,中興大學,台中。 黃秋雄。1979。柑橘立枯病病原在罹病柑橘樹之分佈。中華農業研究。28:29-33。 劉錦志。2000。抗生素作為飼料添加物之認知。畜牧半月刊。64: 69-72。 劉振梅。1998。藥物化學-抗生素。中國科技醫藥出版社。 劉興華、趙國芳、楊筱惠。1995。醫護藥物學。華杏出版股份有限公司。 蘇博信。2008。經由不完全燃燒所產生碳微粒吸附有機化合物之研究,碩士論文,中興大學,台中。 蘇秋竹、馮鈞育、高清文、曾國欽、徐世典。2010。梨葉緣焦枯病。期刊論文,農業試驗所,台中。 Aleksandrov, A. and T. Simonson. 2006. The tetracycline: Mg2+ complex: A molecular mechanics force field. J. Comput. Chem.27: 1517-1533. Allen-King, R. M., P. Grathwohl, and W. P. Ball. 2002. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Adv. Water Resour.25: 985-1016. Batt, A. L., I. B. Bruce and D. S. Aga. 2006. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ. Pollut.142: 295-302. Bermudez, G. M. A., M. Moreno, R. Invernizzi, R. Plá, and M. L. Pignata. 2010. Heavy metal pollution in topsoils near a cement plant: the role of organic matter and distance to the source to predict total and hcl-extracted heavy metal concentrations. Chemosphere.78: 375-381. Brown, K. D., J. Kulis, B. Thomson, T. H. Chapman and D. B. Mawhinney. 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ.366: 772-783. Braschi, I., S. Blasioli, L. Gigli, C. E. Gessa, A. Alberti, and A. Martucci. 2010. Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard. Mater.178: 218-225. Casado-Terrones, S., A. Segura-Carretero, S. Busi, G. Dinelli, and A. Fernández-Gutiérrez. 2007. Determination of tetracycline residues in honey by CZE with ultraviolet absorbance detection. Electrophoresis.28: 2882-2887. Chang, P. H., Z. Li, T. L. Yu, S. Munkhbayer, T. H. Kuo, Y. C. Hung, J. S. Jean, K. H. Lin. 2009. Sorptive removal of tetracycline from water by palygorskite. J. Hazard. Mater. 165: 148-155. Chang, P. H., J. S. Jean, W. T. Jiang, and Z. H. Li. 2009. Mechanism of tetracycline sorption on rectorite. Colloids and Surfaces A: Physicochem. Eng. Aspects. 339: 94-99. Chang, P. H., Z. H. Li, W.T. Jiang, and J. S. Jean. 2009. Adsorption and intercalation of tetracycline by swelling clay minerals. Appl. Clay Sci. 46: 27-36. Chee-Sanford, J. C., R. I. Mackie, S. Koiko, I. G. Krapac, Y. F. Lin, A. C. Yannarell, S. Maxwell, and R. I. Aminov. 2009. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual.1086-1108. Chen, J., F. Z. Hao, T. W. Hua, and Z. G. Cheng. 2011. Adsorption and desorption of tetracycline on activated carbons. Adv. Mater. Res.233-235: 561-566. Chen, W. R., and C. H. Huang. 2010. Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere.79: 779-785. Chen, B., E. J. Johnson, B. Chefetz, L. Zhu, and B. Xing. 2005. Sorption of polar and nonpolar aromatic otganic contaminants by plant cuticular materials: role of polarity and accessibility. Environ. Sci. Technol.39: 6138- 6146. Cheng, G. and K. G. Karthikeyan. 2005. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technolnol.39: 2660-2667. Cheng, C. H., J. Lehmann, J. E. Thies, S.D. Burton, and M.H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem.37: 1477- 1488. Choi, K. J., S. G. Kim, and S. H. Kim. 2008. Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon. Environ. Technol.29: 333-342. Chun, Y., G. Sheng, C. T. Chiou, and B. Xing. 2004. Compositions and sorptive properties of crop residue- derived chars. Environ. Sci. Technol.38: 4649-4655. Cornelissen, G. and O. Gustafsson. 2004. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environ. Sci. Technol.38: 148-155. Cornelissen, G., Ö. G., T. D. Bucheli, M. T. O. Jonker, A. A. Koelmans, and P. C. M. V. Noort. 2005. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils- mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol.39: 6881-6895. Daughton, C. G., and T. A. Ternes. 1999. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ. Health Perspect.107: 907-938. Della, V. P., I. Kuhn, and D. Hotza. 2002. Ricehuskash as an alternatesource for activesilica production. Mater. Lett.57: 818-821. Fang, L., O. K. Borggaard, H. Marcussen, P. E. Holm, H. Bruun, and C. Hans. 2010. The pH-dependent adsorption of tributyltin to charcoals and soot. Environ. Pollut.158: 3642-3649. Figueroa, R. A., A. Leonard, and A. A. MacKay. 2004. Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol.38: 476- 483. Figueroa, R. A., A. A. Mackay. 2005. Sorption of oxytetracycline to iron oxides and iron oxides- rich soils. Environ. Sci. Technol.39: 6664- 6671. Forbes, M. S., R. J. Raison, and J. O. Skjemstad. 2006. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ.370: 190-206. Freitas, J. C.C., T. J. Bonagambac, and F. G. Emmerich. 2001. Investigation of biomass- and polymer-based carbon materials using 13C high-resolution solid-state NMR. Carbon.39: 535-545. Glaser, B., L. Haumaier, G. Guggenberger, and W. Zech. 1998. Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org. Geochem.29: 811-819. Goldberg, E. D. 1985. Black carbon in the environment: properties and distribution. John Wiley and Sons, New York. Gu, C. and K. G. Karthikeyan. 2005. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol.39: 2660-2667. Gu, C., K. G. Karthikeyan, S. D. Sibley, and J. A. Pedersen. 2007. Complexation of the antibiotic tetracycline with humic acid. Chemosphere.66: 1494-1501. Gu, C. and K. G. Karthikeyan. 2008. Sorption of the antibiotic tetracycline to humic-mineral complexes. J. Environ. Qual.37: 704-711. Gyu, H. O., and R.P. Chong. 2002. Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel 81: 327-336. Hayes, K. F., C. Papelis, and J. O. Leckie. 1988. Modeling ionic strength effects on anion adsorption at hydrous oxide-solution interfaces. J. Colloid Interface Sci.125: 717-726. Halling-Sørensen, B., A. Lykkeberg, F. Ingerslev, P. Blackwell, and J. Tjørnelund. 2003. Characterisation of the abiotic degradationpathways of oxytetracyclines in soil interstitial water using LC–MS–MS. Chemosphere.50: 1331-1342. Halling-Sørensen, B., S. N. Nielsen, P. F. Lanzky, F. Ingerslev, H. C. H. Lützhøft, and S. E. Jørgensen. 2003. Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere.36: 357-393. Hammes, K., R. J. Smernik, J. O. Skjemstad, A. Herzog, U. F. Vogt, and M. W. I. Schmidt. 2006. Synthesis and characterization of laboratory-charred grass straw and chestnut wood as reference materials for black carbon quantification. Org. Geochem.37: 1629-1633. Hamscher, G., S. Sczesny, H. Höper, and H. Nau. 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem.74: 1509-1518. Heilig, S., P. Lee, and L. Breslow. 2002. Curtailing antibiotic use in agriculture. West J Med. 176: 9-11. Hilton, H. W. and Q. H. Yuen. 1963. Soil adsorption of herbicides, adsorption of serveral pre-emergence herbicides by hawaiian sugar cane soils. J. Agric. Food Chem.11: 230-234. Hirscha, R., T. Ternesa, K. Haberera, and K. L. Kratzb. 1999. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ.225: 109-118. Homem, V., and L. Santos. 2011. Degradation and removal methods of antibiotics from aqueous matrices – A review. J. Environ. Manage.92: 2304-2347. Huang, W., and B. Chen. 2010. Interaction mechanisms of organic contaminants with burned straw ash charcoal. J. Environ. Sci.22: 586-1594. Ji, L., W. Chen, S. Zheng, Z. Xu, and P. J. Alvarez. 2010. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxi. Chem.29: 2713-2719. Ji, L., Y. Wan, S. Zheng, and D. Zhu. 2011. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption. Environ. Sci Technol.45: 5580-5586. Jia, D., D. Zhou, Y. Wang, H. Zhu, and J. Chen. 2008. Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma.146: 224-230. Jiao, S., S. Zheng, D. Yin, L. Wang, and L. Chen. 2008. Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J. Environ. Sci.20: 806-813. Ji, L., W. Chen, D. Lin, and D. Zhu. 2009. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol.43: 2322-2327. Ji, L., W. Chen, S. R. Zheng, Z. Xu, and P. J. Alvarez. 2010. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxi. Chem.29: 2713-2719. Ji, L., W. Chen, D. Lin, and D. Zhu. 2010. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environ. Sci. Technol.44: 3116-3122. Jonker, M. T. O., A. M. Hoenderboom, and A. A. Koelmans. 2009. Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls. Environ. Toxicol. Chem.23: 2563- 2570. Jung, M. W., K. H. Ahn, Y. Lee, K. P. Kim, J. S. Rhee, J. T. Park, and K. J. Paeng. 2001. Adsorption characteristics of phenol and chlorophenols on granular activeated carbon (GAC). Microchem. J.70: 123-131. Karthikeyan, K. G. and M. T. Meyer. 2006. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 361: 196-207. Khan, M. A., J. Mustafa, and J. Musarrat. 2003. Mechanism of DNA strand breakage induced by photosensitized tetracycline–Cu(II) complex. Mut. Res. Fund. Mol. Mech.525: 109-119. Kim, S. C., K. Carlson. 2007. Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS. Ana.l Bioanal. Chem.387:1301- 1315. Klaus, L. R. L., and J. J. Jiménez. 2010. Characterization of soil organic matter and black carbon in dry tropical forests of Costa Rica. Geoderma.158: 315-321. Kolpin, D.W., E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, and H. T. Buxton. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999- 2000:  A aational reconnaissance. Environ. Sci. Technol.36: 1202-1211. Kuhlbusch, T.A. J. 1995. Method for determining black carbon in residues of vegetation fires. Environ. Sci. Technol.29: 2695-2702. Kulshrestha, P., R. F. Giese Jr., and D. S. Aga. 2004. Investigating the molecular interactions of oxytetracycline in clay and organic matter-  insights on factors affecting its mobility in soil. Environ. Sci. Technol. 38: 4097-4105. Kümmerer, K. 2003. Significance of antibiotics in the environment. J. Chem. A.52: 5-7. Lehmann, J. and M. Rondon. 2006. Bio-char soil management on highly weathered soils in the humid tropics. Biol. Sustainable Soil Syst.517-530. Li, G.T., H. H. Li, Y. X. Li, J. Chen, and X. W. Zhang. 2010. Adsorption of Tetracycline by Activated Carbon Fibre. Bioinform. Biomed. Engin. 1-4. Li, Z., P. H. Chang, J. S. Jean, W. T. Jiang, and C. J. Wang. 2010. Interaction between tetracycline and smectite in aqueous solution. J. Colloid Interface Sci.341:311-319. Li, Z., L. Schulz, C. Ackley, and N. Fenske. 2010. Adsorption of tetracycline on kaolinite with pH-dependent surface charges. J. Colloid Interface Sci.351:254-260. Liang, B., J. Lehmann, S. P. Sohi, J. E. Thies, B. O’Neill, L. Trujillo, J. Gaunt, D. Solomon, J. Grossman, E. G. Neves, and F. J. Luizão. 2010. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem.41: 206-213. Liang, B., J. Lehmann, D. Solomon, S. Sohi, J. E. Thies, J. O. Skjemstad, F. J. Luizao, M. H. Engelhard, E. G. Neves, and S. Wirick. 2008. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta.72: 6069- 6078. Lindsey, M. E., M. Meyer, and E. M. Thurman. 2001. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem.73: 4640-4646. Liou, T. H. 2004. Evolution of chemistry and morphology during the carbonization and combustion of rice husk. Carbon.42: 785- 794. Liu, J. C., Y. M. Tzou, Y. H. Lu, J. T. Wu, M. P. Cheng, and S. L. Wang. 2010. Enhanced chlorophenol sorption of soils by rice-straw-ash amendment. J. Hazard. Mater.177: 692-696. Lohmann, R., J. K. MacFarlane, and P. M. Gschwend. 2005. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. Environ. Sci. Technol.39: 141- 148. Luo, L., L. Lou, X. Cui, B. Wu, J. Hou, B. Xun, X. Xu, and Y. Chen. 2011. Sorption and desorption of pentachlorophenol to black carbon of three different origins. J. Hazard. Mater.185: 639-646. Machado, F. C., C. D., A. Garnier-Suillerot, and H. Beraldo. 1995. Metal complexes of anhydrotetracycline. 2. Absorption and circular dichroism study of Mg(II), AMID, and Fe(III) complexes. Possible influence of the Mg(II) complex on the toxic side effects of tetracycline. J. Inorg. Biochem.60: 163-173. Mackay, A. A., and B. Canterbury. 2005. Oxytetracycline sorption to organic matter by metal-bridging. J. Environ. Qual. 34: 1964- 1971. Martinez, J. L. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut.157: 2893-2902. Montes-Moran, M.A., D. Suarez, J.A. Menendez, and E. Fuente. 2004. On the nature of basic sites on carbon surfaces: an overview. Carbon.42:1219-1225. Nguyen, T. H., R. A. Brown, and W. P. Ball. 2004. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Org. Geochem.35: 217-234. Oleszczuk, P., B. P., and B. Xing. 2009. Adsorption and desorption of oxytetracycline and carbamazepine by mltiwalled crbon nanotubes. Environ. Sci. Technol.43: 9167-9173. Oste, L.A., E. J. M. Temminghoff, and W. H. Van Riemsdijk. 2002. Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration. Environ. Sci. Technol.36: 208-214. Palm, G. J., T. Lederer, P. Orth, W. Saenger, M. Takahashi, W. Hillen, and W. Hinrichs. 2008. Specific binding of divalent metal ions to tetracycline and to the Tet repressor/tetracycline complex. J. Biol. Inorg. Chem.13: 1097-1110. Parolo, M. E., M. C. Savini, J. M. Vallés, M. T. Baschini, and M. J. Avena. 2008. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl. Clay Sci.40: 179-186. Park, S., and K. Choi. 2008. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicol.17: 526- 538. Pils, J. R. V., and D. A. Laird. 2007. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ. Sci. Technol.41: 1928-1933. Preston, C.M., and M.W. I. Schmidt. 2006. Black (pyrogenic) carbon- a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosci.3: 397-420. Reddy, C. M., A. Pearson, L. Xu, A. P. McNichol, B. A. BennerJr., S. A. Wise, G. A. Klouda, L. A. Currie, and T. I. Eglinton. 2002. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples. Environ. Sci. Technol.36 : 1774-1782. Richardson, M. L, J. M Bowron. 1985. The fate of pharmaceutical chemicals in the aquatic environment. J. Pharm. Pharmacol.37: 1-12. Roberts, M. C. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev.19: 1-24. Shi, Y. J., X. H. Wang, Z. Qi, M. H. Diao, M. M. Gao, S. F. Xing, S. G. Wang, and X. C. Zhao. 2011. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules. J. Hazard. Mater.191: 103-109. Schmidt, M. W. I., J.O. Skjemstad, C.I. Czimczik, K. M. Prentice, Y. Gelinas, and T. A. J. Kuhlbusch. 2001. Comparative analysis of black carbon in soils. Global Biogeochem. Cycles.15: 163-167. Seiler, W., and P. J. Crutzen. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change. 2: 207-247. Sithole, B. B., and R. D. Guy. 1987. Models for tetracycline in aquatic environments. Water, Air, Soil Pollut.32: 303-314. Sun, H, and Z. Zhou. 2008. Impacts of charcoal characteristics on sorption of polycyclic aromatic hydrocarbons. Chemosphere. 71: 2113- 2120. Tam, K. Y. 2001. Multiwavelength spectrophotometric resolution of the micro-equilibria of a triprotic amphoteric drug: Methacycline. Mikrochim. Acta.136: 91-97. Tavares, M. F. M., and V. L. McGuffin. 1994. Separation and characterization of tetracycline antibiotics by capillary electrophoresis. J. Chromatogr. A.686:129-142. Teixidó, M., J. J. Pignatello, J. L. Beltrán, M. Granados, and J. Peccia. 2011. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol.45: 10020-10027. Thevenon, F., D. Williamson, E. Bard, F. S. Anselmetti, L. Beaufort, and H. Cachier. 2010. Combining charcoal and elemental black carbon analysis in sedimentary archives: Implications for past fire regimes, the pyrogenic carbon cycle, and the human–climate interactions. Global. Planet. Change.72: 381-389. Tolls J. 2001. Sorption of veterinary pharmaceuticals in soils: A review. Environ. Sci. Technol.35: 3397-3406. Wan, Y., Y. Bao, and Q. Zhou. 2010. Simultaneousadsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere.80: 807-812. Wang, S. L., Y. M. Tzou, Y. H. Lu, and G. Sheng. 2007. Removal of 3-chlorophenol from water using rice-straw-based carbon. J. Hazard. Mater.147: 313-318. Watkinson, A. J., E. J. Murby, D. W. Kolpin and S. D. Costanzo. 2009. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ.407: 2711-2723. Xu, X. R. and X. Y. Li. 2010. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere.78: 430-436. Yang, Y., and G. Sheng. 2003. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ. Sci. Technol. 37: 3635- 3639. Zhao, Y., J. Geng, X. Wang, X. Gu, and S. Gao.2011. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects. Ecotoxicol.20: 1141-1147. Zhao, Y., J. Geng, X. Wang, X. Gu, and S. Gao.2005. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances. Environ. Sci. Technol.39: 2660-2667. Zhu, D., and J. J. Pignatello.2005. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci. Technol.39: 2033- 2041.en_US
dc.identifier.urihttp://hdl.handle.net/11455/25641-
dc.description.abstract四環素類抗生素被廣泛應用在人類治療、獸醫以及動物的生長促進劑,但由於施用的四環素只有少部分可以被動物體吸收或代謝,未經吸收或代謝的四環素則經由動物尿液或糞便排出體外而進到環境中,進而造成環境微生物抗藥性的增加。稻草燃燒是水稻收成後之常見作為,會導致生質炭的產生並累積於水田土壤中,而生質炭對於污染物的吸附和滯留可能發揮重要作用。本研究探討稻草生質炭對抗生素四環素(tetracycline)之吸附反應機制,以及不同pH值、離子強度和不同陰陽離的添加對稻草生質炭吸附四環素的影響。吸附反應受pH值影響,當四環素為兩性物種之pH時吸附作用最強;隨著pH的增加,吸附量隨之減少,這是因為生質炭表面官能基的去質子化作用和四環素的氫離子解離作用所產生之靜電排斥所致。離子強度的改變對於吸附反應並沒有顯著的差異。當TC溶液中含有Cu2+和Al3+的存在時,TC吸附至生質炭上的吸附量會受到抑制。zh_TW
dc.description.abstractTetracyclines antibiotics have been extensively used in the farming industry as veterinary therapeutics and growth promoters. Because the antibiotics given to livestock are often poorly metabolized and absorbed, a considerable amount of the antibiotics is released into the environment. The excessive antibiotics in the environment would increase the antibiotic resistance in environmental microorganisms. On rice paddy lands, open-field burning of rice straw is a common post-harvest practice and results in the accumulation of rice-straw biochar (RSB) in the soils. To understand role of RSB in determining the retention of tetracyclines in soils, this study investigated the sorption of tetracycline (TC) by RSB, with varying pHs, ionic strengths, and the types of cations and anions. The sorption of TC on RSB was highly pH-dependent and the neutral TC species was preferentially sorbed by RSB. With increasing pH, the sorption of TC on RSB decreased due to the deprotonation of surface functional groups of RSB and the dissociation of TC. Ionic strength had no significant effect on TC sorption. The presences of Cu2+ and Al3+ inhibited the sorption of TC on RSB while the other cations and anions exhibited no significant effects.en_US
dc.description.tableofcontents摘要………………………………………………………………………ii Abstract…………………………………………………………………ii 目錄……………………………………………………………………iii 圖目錄……………………………………………………………………vi 表目錄…………………………………………………………………viii 第一章 前言………………………………………………………………1 第二章 文獻回顧…………………………………………………………3 2.1 抗生素簡介及抗菌機制……………………………………………3 2.2 四環素介紹…………………………………………………………5 2.3 四環素在環境中的流佈及影響……………………………………8 2.4 生質炭之來源與特性………………………………………………12 2.4.1 生質炭之來源……………………………………………………12 2.4.2 生質炭之結構與特性……………………………………………12 2.4.3 生質炭對有機污染物的吸附……………………………………16 第三章 材料與方法……………………………………………………18 3.1 試驗試劑及設備……………………………………………………19 3.2 樣品製備……………………………………………………………20 3.2.1 稻草生質炭………………………………………………………20 3.2.2 炭化生質炭………………………………………………………20 3.3 生質炭基本性質分析………………………………………………20 3.3.1 元素分析…………………………………………………………20 3.3.2 等電點測定(Point of Zero Charge, PZC)………………21 3.3.3 比表面積測定……………………………………………………21 3.3.4 13C-NMRN測定……………………………………………………21 3.3.5 傅立葉轉換紅外線光譜…………………………………………22 3.3.6 Boehm滴定………………………………………………………22 3.4 pH值對生質炭吸附四環素之影響…………………………………22 3.4.1 不同pH值之檢量線製備…………………………………………22 3.4.2 生質炭在不同pH值下對四環素之等溫吸附試驗………………25 3.4.3 不同pH值之動力學試驗…………………………………………25 3.4.4 pH影響生質炭吸附TC之試驗……………………………………25 3.4.5 不同pH值之脫附試驗……………………………………………26 3.5 離子強度對生質炭吸附四環素之影響……………………………26 3.6 添加陰陽離子對生質炭吸附四環素之影響………………………26 3.6.1 四環素添加陽陰離子之檢量線製備……………………………26 3.6.2 四環素添加陰陽離子對生質炭吸附四環素試驗………………27 3.7 動力學模式…………………………………………………………28 3.7.1擬一階方程式(Pseudo first order)………………………28 3.7.2 Elovich rate equation……………………………………28 3.8 等溫吸附曲線之常數計算………………………………………29 3.8.1 Freundlich Equation…………………………………………29 3.8.2 Langmuir Equation……………………………………………29 第四章 結果與討論……………………………………………………31 4.1 生質炭特性分析…………………………………………………31 4.1.1 元素分析及等電點之測定……………………………………31 4.1.2 比表面積測定…………………………………………………33 4.1.3 13C-NMR 測定…………………………………………………33 4.1.4 傅立葉轉換紅外線光譜分析…………………………………35 4.1.5 生質炭表面官能基……………………………………………37 4.2 不同pH值對生質炭吸附四環素之影響…………………………38 4.2.1 pH影響生質炭吸附TC試驗……………………………………40 4.2.2 生質炭在不同pH下吸附TC之動力試驗 ………………………40 4.2.3 生質炭於不同pH下吸附TC之等溫試驗………………………41 4.2.4 FTIR分析………………………………………………………42 4.2.5 小結……………………………………………………………43 4.3 離子強度對生質炭吸附四環素之影響…………………………52 4.4 添加陰陽離子對生質炭吸附四環素之影響……………………58 第五章 結論……………………………………………………………66 第六章 參考文獻………………………………………………………68zh_TW
dc.language.isozh_TWen_US
dc.publisher土壤環境科學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708201200493900en_US
dc.subject四環素zh_TW
dc.subjecttetracyclineen_US
dc.subject生質炭zh_TW
dc.subject吸附zh_TW
dc.subject稻草zh_TW
dc.subjectbiocharen_US
dc.subjectadsorptionen_US
dc.subjectrice strawen_US
dc.title稻草生質炭對四環素吸附反應之探討zh_TW
dc.titleAdsorption of tetracycline by rice-straw biocharen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:土壤環境科學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.