Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25647
DC FieldValueLanguage
dc.contributor黃裕銘zh_TW
dc.contributor.author潘佳辰zh_TW
dc.contributor.authorPan, Chia-Chenen_US
dc.contributor.other土壤環境科學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T07:25:55Z-
dc.date.available2014-06-06T07:25:55Z-
dc.identifierU0005-3101201301232500en_US
dc.identifier.citation朱雅玲、賴榮茂、侯秉賦 2012 菜豆栽培管理及病蟲害防治技術 高雄區農技報導111 高雄區農業改良場編印 1-32。 梁鶚。1978。豆類蔬菜。豐年叢書。p157-164。 林融駿。 2012。氮、磷、鉀及鎂養分濃度對水耕小白菜感染炭疽病之影響。 國立中興大學土壤環境科學系碩士論文。 邱智琦。 2010。 一條根 (闊葉大豆 Glycine tomentella) 之根瘤菌分離及特性研究。 國立中興大學土壤環境科學系碩士論文。 洪美華。2002。台灣本土豆科植物根瘤菌分離及特性研究。 國立中興大學土壤環境科學系碩士論文。 張裕釧、吳美貌。 2005。 生物性肥料於有機農業發展上的重要性。 農業生物產業季刊。4: 1-8。 陳柏沅。 2004。 澎湖群島根瘤菌之分類及特性分析。 國立中興大學土壤環境科學系碩士論文. 黃裕銘、吳正宗。 2006。 肥料學名詞。 國立中興大學土壤調查試驗中心。 農業統計年報(100年)。2013。行政院農業委員會。 葉茂生。 1991。 作物學。 國立中興大學。 p 172-173. 羅秋雄。 2005。 作物施肥手冊。 行政院農業委員會農糧署。. Abdelhamid, M.T., H.A. Kamel, and M.G. Dawood. Response of non-nodulating, nodulating, and super-nodulating sotbean genotypes to potassium fertilizer undeer water stress. J. Plant Nutrition.34: 1675-1689. Becker, M., K. H. Diekmann, J. Lahda, S. K. De Datta, and J. C. G. Ottow. 1991. Effect of NPK on growth and nitrogen fixation Sesbania rostrata green manure for lowland rice (Oryza sativa L.). Plant Soil 132: 149-158. Bernardo Murillo-Amadora, H. G. J., C.K Cengiz, R. L. Aguilara, J. L. Garcia-Hernandeza, E. Troyo-Diegueza, N. Y. Avila-Serranod, and E.Rueda-Puentee. 2006. Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environ Exper Bot. 58: 188-196. Campo, R. J.. 1995. Residual effects of aluminium on Bradyrhizobium japonicum in defined medium and soil solution. Ph.D. Thesis. The university of reading. Chao, W.L..1989. Antagonistic activity of Rhizobium spp. Against beneficial and plant pathogenic fungi. Letters in applied microbiology. 10: 213-215. Cisse, N. and A. E. Hall. Tradition cowpea in Senegal, a case study. Darine Trabelsi, A. M., M. E. Aouani, M. Bazzicalupo, and R. Mhamdi. 2010. Genetic diversity and salt tolerance of Sinorhizobium populations from two Tunisian soils. Ann Microbiol 60: 541-547. David F. Herridge, C. A. A., J. S. Pate, and R. M. Rainbird. 1987. Allantoin and Allantoic Acid in the Nitrogen Economy of the Cowpea ( Vigna unguiculata [L.J Walp.). Plant Physiol 62: 495-498. Eaglesham, A.. 1982. Nitrogen Nutrition of Cowpea (Vigna unguiculata). Plant Soil. 68: 171-181. Eaglesham, A. R. J., A. Ayanaba, V. R. Rao, and D. L. Eskew. 1982. Mineral N effects on cowpea and soybean crops in a Nigerian soil I. Development, nodulation, acetylene reduction and grain yield. Plant Soil. 13: 369-380. Feigenbaum, S., and K. Mengel. 1979. The effect of reduced light intensity and sub-optimal potassium supply on N2 fixation and N turnover in rhizobium infected lucerne. Physiol Plant. 45: 245-249. Fellows, J.F.J.. 1976. Nodule activity and allocation of photosynthate of soybean during recovery from water stress. Physiol. Plant: 456-460. Fernandez, D.S., and J. Ascencio. 2008. Acid phosphatase activity in bean and cowpea plants grown under phosphorus stress. J Plant Nutr. 17: 229-241. Fox, R.L., B.T. Kang, and D. Nangiu. 1977. Sulfur Requirements of Cowpea and Implications for Production in the Tropics. Agronomy Journal 69: 201-205. Frings, J.F.J.. 1976. The Rhizobium-pea symbiosis as affected by high tempertures. Thesis, Medelingen Landbouwogeschool, Wageningen Agricultural University, Wgeningen. Gaines, T.P., and S.C. Phatak. 1982. Sulfur Fertilization Effects on the Constancy of the Protein N:S Ratio in Low and High Sulfur Accumulating Crops. Agron J. 74: 415-418. Galloway, J.N.. 1998. The global nitrogen cycle: changes and consequence. Environ. Pollut. 102: 15-24. Gan, Y., I. Stulen, H. van Keulen, and P.J.C. Kuiper. 2004. Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g-1 root dry weight) and specific N2 fixation (N2 fixed g-1 root dry weight) in soybean. Plant Soil. 258: 281-292. Gibson, A.H.. 1975. Recovery and compensation by nodulated legumes to environmental stress. In: Nutman, P.S. (Ed.), Nitrogen fixation inplants: 385-443. Gibson, A.H.. 1980. Methods for legumes in glasshouses and controlled environment cabinets. Book: Methods for evaluating biological nitrogen fixation: 139-183. Graham, P.H., K.J. Draeger, M.L. Ferrey, M.J. Conroy, B.E. Hammer, E. Martinez, S.R. Aarons, and C. Quinto. 1994. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. J. Can. Microbiol. 40: 198-207.   Graham P.H. , and C.P.Vance. 2000. Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res. 65: 93-106. Graham, P.H.. 1981. Some problems of nodulation and symbiotic nitrogen fixation inn Phaseolus vulgaris: a review. Field Crop Res. 4: 93-112. Grewal, H.S. and R. Williams. 2002. Influence of potassium fertilization on leaf to stem ratio, nodulation, herbage yield, leaf drop, and common leaf spot diease of alfalfa. J Plant Nutr. 25: 781-795. Guerin, V., D. Pladys, , C. Trinchant, and J.M. Rigud. 1991. Proteolysis and nitrogen fixation in faba-bean (Vicia faba) nodules under water stress. Physiol. Plant 82: 360-366. Hardy, R.W.F.. 1993. Ecology and agricultural applications of nitrogen-fixing system. In agriculture and environmental challenges. 109-117. Horst, W.J.. 1987. Aluminium tolerance and calcium efficiency of cowpea genotypes. J. Plant Nutrition. 10: 1121-1129. Jordan, D.C. 1984. Family III Rhizobiaceae CONN 1938 321. In: Krieg, N.R., Holt, J.G. (Eds), Bergey''s manual of Systematic Bacteriology. William and Wilkins, Baltimore. London: 235-244. Jordan, D.C. 1984. Family III Rhizobiaceae CONN 1938, 321AL. Bergy''s Manual of Systematic Bacteriology.: 235-244. Kitch, L.. Vigna unguiculata. Food and agriculture organization. Kolawole, G.O., G. Tian and B.B. Singh. 2000. Differential response of cowpea lines to aluminum and phosphorus application. J. Plant Nutrition. 23: 731-740. Kolawole, G.O., A.O. Olayiwola, O. Ige, G.O. Oyediran and B.A. Lawal. 2010. Evaluation of phosphorus fertilizer rates for maize and sources for cowpea on different soil types in southwestern Nigeria. Afr J Biotechnol. 9: 3563-3568.   Li, Y.Y., C.B. Yu, X. Cheng, C.J. Li, J.H. Sun, F.S. Zhang, H. Lambers and L. Li. 2009. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant Soil. 323: 295-308. Magani, I.E. and C. Kuchinda. 2009. Effect of phosphorus fertilizer on growth, yield and crude protein content of cowpea (Vigna unguiculata [L.] Walp) in Nigeria. . Applied Biosciences. 23: 1387 -1393. Maas, E. V., J.A. Poss. 1989. Salt sensitivity of cowpea at various growth stages. Irrigation Science. 10: 313-320. Mensah, J. K., F. Esumeh, M.Iyamu and C. Omoifo. 2006. Effects of different salt concentrations and pH on growth of Rhizobium sp. and cowpea- Rhizobium association. American- Eurasian J. Agric & Environ. Sci.. 1: 198-202. Montanez, A.. 2000. Overview and Case studies on Biological Nitrogen Fixation: Perspectives and Limitations. FAO. Munns, D.N.. 1986. Acid soil tolerance in legumes and rhizobia. Adv. Plant Nutr 2: 63-91. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15: 473-497. Mylona, P., K. Pawlowski, and T. Bisseling . 1995. Symbiotic nitrogen fixation. Plant Cell. 7: 869-885. Narwal, R.P., V. Kumar and J.P. Singh. 1985. Potassium and magnesium relationship in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil. 86: 129-134. Nielsen, S.S., T.A. Ohler, and C.A. Mitchell. Advances in cowpea research. Cowpea leaves for human consumption: production, utilization, and nutrient composition. p.326-332. Norouzi, H.A., F. Vazin, and E.S. Biary. 2011. Evaluated the effect of physiological properties wheat cultivars to nitrogen sources. W.A.S.E.T.. 58: 170-173. Othman, W.M.W., T.A. Lie, L. ''t Mannetje and G.Y. Wassink.. 1991. Low level phosphorus supply affecting nodulation, N2 fixation and growth of cowpea (Vigna unguiculata L. Walp). Plant Soil. 135: 67-74. Rao, N.S S. 1987. Biological Nitrogen Fixation: Recent Developments. Gordon and Breach. Sanginga, N., O. Lyasse and B.B. Singh. 2000. Phosphorus use efficiency and nitrogen balance of cowpea breeding lines in a low P soil of the derived savanna zone in West Africa. Plant Soil. 220: 119-128. Scherer, H.W., S. Schubert and K. Mengel. 1982. The effect of potassium nutrition on growth rate, cabohydrate content, and water retention in young wheat plants. Z. Pflanzenernahr. Bodenk. 145: 237-245. Serraj, R., V. Vadez, L.C. Purcell, and T.R. Sinclair. 1999. Recent advance in the physiology of drought stress effects on symbiotic N2 fixation in soybean. In: Martinez, E., Hernandez, . Singh, B.B., D.R.M. Raj, K.E. Dashiell, and L.E.N. Jackai. 1997. Advances in cowpea research. International institute of tropical agriculture,Ibadan, Nigeria and Japan international research center for agricultural sciences Tsukuba, Ibaraki, Japan. Talibart, R., M. Jebbar, G. Gouesbet, S.H. Kabbab, H. Wroblewski, C. Blanco and T. Benard. 1994. Osmoadaptation in Rhizobia: ectoine induced salt tolerance. J. Bacteriol.. 176: 5210-5217. Terao, T., I. Watanabe, R. Matsunaga, S. Hakoyama, and B.B. Singh. 1992. Agro-physiological costrains in intercropped cowpea : an analysis. Google. Advances in cowpea research. 129-140. Vincent, J.M..1970. A manual for the Pratical Study of Root- Nodule Bacteria. IBP Handbook No. 15, black well Sci., Oxford, Great Britian. Vesterager, J.M., H. Hogh-Jensen and N.E. Nielsen. 2006. Variation in phosphorus uptake and use efficiencies between pigeonpea genotypes and cowpea. J. Plant Nutr. 29: 1869–1888. Walsh, K.B.. 1995. Physiology of the legume nodule and its response to stress. Soil Biol. Biochemistry 27: 637-655. West, D. W., and L.E. Francois. 1982. Effect of salinity on germination, growth and yield of cowpea. Irrig. Sci.. 3: 169-175. Wood, M.. 1995. A mechanism of aluminium toxicity to soil bacteria and possible ecological implications. Plant-Soil interactions at low pH. p 173-179  en_US
dc.identifier.urihttp://hdl.handle.net/11455/25647-
dc.description.abstract製作氮肥消耗之能量占總農業操作50%以上。豇豆接種優良豇豆固氮菌株,可以提供豇豆生長但源所需。豇豆共生性根瘤菌在台灣的研究較少。豇豆回接試驗發現用蛭石介質時,植株生長受到抑制。本研究目的可分為一、篩選豇豆共生性固氮菌。二、篩選及評估適合豇豆生長之培養介質。三、評估豇豆共生性固氮菌施用於實驗室、盆栽及田間試驗中對於豇豆生長促進效率。四、於田間試驗中進行種子拌種並比較豇豆生長情形。 由豇豆根瘤篩選固氮菌結果中,由49種土壤以豇豆 (栽培種:101) 培養28天,經初步回接試驗篩選出7株豇豆共生性固氮根瘤菌,經過16s rDNA鑑定得知六株為Bradyrhizobium sp.,一株為Ensifer sp.。結瘤能力及乙炔還原能力測試顯示TY5具有最高的根瘤數目為25顆,根瘤新鮮重以6243最高為0.369 g,而MY2-23 (2) 在乙炔還原法有最高的表現分別為890 nmole C2H4 plant-1 hr-1及8715 nmole C2H4 g-1 hr-1。菌株耐酸鹼能力試驗將菌株接種至pH 4.8、5.8、6.8、7.8、8.8YEM培養液,MY2-23 (2) 於pH 7.8 O.D.600測值最高;DL4 (2) 於pH 6.8最佳;TY5於pH 6.8最佳;PT2於pH 4.8最佳;6242於pH 6.8最佳;6243於pH 6.8最佳;632於pH 7.8最佳;菌株耐電導度能力試驗將菌株接種至含NaCl 0.02、1、3、5、7% YEM培養液,MY2-23 (2)、PT2能生長至1% NaCl YEM培養液中;DL4(2)、TY5、6242、6243、632能生長至0.02% NaCl YEM培養液中。介質試驗中以泥炭土、真珠石、洋菜培養基、酸化蛭石為栽培介質。豇豆在酸化蛭石中生長受到抑制,而在泥炭土、真珠石、洋菜培養基處理則生長情況較好。泥炭土、真珠需將根系拔出才可觀察根瘤生長;洋菜培養基則易於觀察,但根瘤生長空間僅洋菜膠與空氣的交接處,易低估微生物效率。由介質試驗中,泥炭土處理由植株鮮、乾重中顯示適度的氮肥、充足的養分可以增加植株生長,且在根瘤數上並無明顯減少。由於回接試驗中事先去除養液配方之硝酸鉀故需額外添加4.38 g L-1氯化鉀,結果顯示添加氯化鉀後可顯著增加豇豆鮮、乾重,卻會降低乙炔還原能力及根瘤數。為使植體內養分間平衡及提高乙炔還原能力的準確度,額外添加鉀源是必要的,然鉀濃度需要進行修正以降低對鈣、鎂的擷抗作用。豇豆栽培種與菌株試驗中,選用豇豆栽培種為101、131、白皮 (White);菌株為TY5、MY2-23 (2)。101為菌株篩選宿主。接種MY菌株中101有最高鮮重及乾重;接種TY菌株以131鮮重最高、White乾重最高。131與MY2-23(2)及TY5有較高的乙炔還原能力表現,而非101品系,顯示根瘤菌與豇豆間存在不同的親和性。 盆栽試驗及田間試驗探討氮肥、接種根瘤菌及施用殺菌劑對豇豆 (品種 101) 接踵固氮菌之生長差異。在盆栽試驗中添加氮肥與否對於豇豆鮮重、乾重沒有明顯差異。田間試驗結果發現,添加豇豆固氮菌可以提升根瘤數目,但無提升產量。可能原因為本試驗進行時間為冬季,根瘤消耗較多碳水化合物以維持固氮效率;或是當地土生豇豆固氮菌較接踵之菌株提供較多氮源。土壤添加氮肥及殺菌劑會降低根瘤數目;接踵豇豆固氮細菌會增加根瘤數目。添加豇豆固氮細菌及殺菌劑皆會降低白粉病發病率。zh_TW
dc.description.abstractThe production of nitrogen fertilizer is the most energy consuming activity in agricultural sector. A good symbiotic nitrogen fixation bacteria can contribute main part of nitrogen requirement for legume crops. In Taiwan, there was few reports about cowpea symbiotic bacteria. In preliminary experiment, the growth of cowpea was seriously inhibited in non pH adjusted vermiculite medium. The purposes in this thesis were: First to isolate and identify the cowpea symbiotic nitrogen fixation bacteria for cowpea at first. Secondly, to develop a suitable culture medium formula for easier handle in bacteria re-inoculation test. Thirdly, to evaluate the plant promoting ability of the bacteria selected on the growth of cowpea in indoor controlled system, greenhouse, and field experiments. Last, to evaluate the effect of the fungicide and nitrogen fertilizer on the efficiency of the selected cowpea symbiotic nitrogen fixation bacteria. There were 7 effective cowpea symbiotic nitrogen fixation strains selected from 49 soil samples by using cowpea cultivar 101. MY2-23(2) strain is Ensifer sp. and six strains are Bradyrhizobium sp.. Nodule growth showed strain TY5 had largest number of nodules per plant, strain 6243 had the highest fresh nodule weight per plant. MY2-23(2) showed the highest ethylene reduction ability in 890 nmole C2H4 plant-1 hr-1 and 8715 nmole C2H4 g-1 hr-1. The 7 selected strains were cultured in pH of Yeast Extract Medium (YEM) at 4.8, 5.8, 6.8, 7.8, 8.8 and their growth were detected under O.D. 600. The results showed MY2-23(2) and 632 strains were grown better in alkaline range, DL4(2), TY5, 6242, 6243 strains were grown better in neutral range, PT2 strain was grown better in acid range, growth well in pH 4.8. In salinity tolerance test, the selected strains were cultured in YEM prepared in 0.02, 1, 3, 5, and 7% NaCl strengths. The results showed MY2-23(2)、PT2 can growth in 1% NaCl YEM solution. DL4(2)、 TY5、 6242、6243、632 can growth only in 0.02% NaCl YEM solution. In culture medium experiment, peat, perlite, agar, and acidified vermiculite were used in growing cowpea inoculated with the selected strain. The growth of cowpea in vermiculite medium was inhibited even whose pH was already pre-acidified, the growth of cowpea other three media were acceptable. However, it seems more convenient as cowpea growing in agar medium for easier observing the development of nodule for its partial transparent character. Additionally, peat used in this study containing more available nitrogen than other media but the number of nodules formed didn’t reduce in significant level. An extra potassium source added with 4.38 g L-1 chloride potassium into nutrient solution which can rise the fresh and dry weights significantly but reduce the ability of ethylene reduction and number of nodules. Three cowpea cultivars (101, 131, and white) and two nitrogen fixation bacteria (TY5, MY2-23(2)) were used to examine the cross infection between the cowpea and strains although both strains were selected through cultivar 101. In the result of inoculation, 101 had more fresh and dry weights inoculated by MY2-23(2), and cultivar 131 had more fresh weights and cultivar White had more dry weights as inoculated by TY5. The ethylene reduction ability of MY2-23(2) and TY5 strains in cultivar 131 were better than in cultivar 101. The combination effects of nitrogen fertilizer, nitrogen fixation bacteria, and fungicide on cowpea growth were examined in factorial combination of these three factors in pot and field experiments. In pot experiment, results showed that a higher fresh and dry weights in inoculating treatments no matter with nitrogen application or or not. In field experiment, although the formed nodules in inoculating treatments is higher, but lower cowpea pod productions was found. This may be due to the cowpea is not suitable for the winter season and more nodules may consume more carbohydrate from the host or may be the native nitrogen fixation bacteria is more efficient in nitrogen fixation than the introduced bacterium. The use of fungicide showed a decrease of the nodule formation. The disease severity of powdery mild were decreased by applying fungicide and cowpea nitrogen fixation bacteria. This will be a good practice in plant disease control and worth to pay attention to.  en_US
dc.description.tableofcontents摘要 i Abstract iii 表次 viii 圖次 x 第一章、前言 1 第二章、前人研究 2 一、微生物肥料 2 二、共生性固氮根瘤菌 2 (一)根瘤菌入侵過程 3 (二)影響根瘤菌固氮活性之環境因子 3 (三)測定固氮活性 5 (四)接種劑使用 5 (五) 回接試驗 6 三、豇豆生長特性 6 四、營養元素對於豇豆生長及共生固氮作用影響 8 第三章、台灣土壤篩選豇豆固氮根瘤菌、鑑定及生理生化特性分析 13 一、 材料與方法 13 二、 結果與討論 24 三、結論 26 第四章、四種栽培介質評估豇豆及根瘤生長情形 31 一、 材料與方法 31 二、 結果與討論 34 三、結論 36 第五章、MS無氮養液補充鉀評估豇豆及根瘤生長情形 40 一、材料與方法 40 二、結果與討論: 42 三、結論 44 第六章:三種豇豆栽培種接種兩株豇豆固氮細菌對豇豆生長影響 49 一、材料與方法 49 二、結果與討論 50 三、 結論 53 第七章:盆栽及田間試驗評估施氮及殺菌劑對豇豆固氮菌影響豇豆生長效應 61 一、 材料與方法 61 二、 結果與討論 68 三、 結論 72 第八章 總結 82 參考文獻 83zh_TW
dc.language.isozh_TWen_US
dc.publisher土壤環境科學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3101201301232500en_US
dc.subject豇豆zh_TW
dc.subjectCowpeaen_US
dc.subject固氮細菌zh_TW
dc.subject栽培介質zh_TW
dc.subjectnitrogen fixation bacteriaen_US
dc.subjectcultivation mediaen_US
dc.title豇豆根瘤菌篩選、固氮能力評估培養基比較及 對豇豆生長影響之研究zh_TW
dc.titleStudies on isolation of cowpea symbiotic nitrogen fixation bacteria, culture media and effect on cowpea (Vigna unguiculata) growthen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:土壤環境科學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.