Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25648
標題: 麴菌蛋白酶之特性分析及其應用於牛肉熟成之探討
Characterization of protease from Aspergillus oryzae and its application on tenderization in beef
作者: 石嘉雯
Shih, Chia-Wen
關鍵字: 蛋白酶熟成嫩化;Aspergillus oryzae;protease;tenderization
出版社: 動物科學系所
引用: 蘇遠志,黃世佑。1971。微生物化學工程學。天然書社。 陳勝和。1975。醬油。天然出版社。 李秀,賴滋漢。1976。食品分析與檢驗。第六版。台灣。p.180。 張文重。1976。蛋白質分解酵素 (構造、功能、進化級應用)。台北 國立編譯館。 闕文仁,鄧世正。1977。實用醬油釀造學。環宇出版社。 中國國家標準 (CNS)。1982。編號:N6029. 經濟中央標準局。 王政騰,林慧生,曾弘智,林慶文。1982。屠體之氯化水噴灑真空包 裝材料及冷凍速率對冷藏豬肉品質之影響。中畜會誌。p.23- 40。 劉英俊,汪金追。1982。微生物應用工業。中央圖書出版社。 林慶文。1983。肉品加工學。華香園出版社。 邵力平、沈瑞祥及張素軒。1984。真菌分類學。中國林葉出版社。 季培元。1992。家畜解剖生理學。國立編譯館。 王瓊德,張鴻民,游若篍。1993。自米基質生產黴菌蛋白酶之研究。 食品科學20(1):33-42。 楊盛行,黃中宜。1994。以具澱粉酶活性真菌利用固態發酵生產蛋白 酶。中國農業化學會誌。32(6):589-601。 李忠益。1995。米酒蒸餾廢液回收再利用於酸性蛋白質分解酵素生產 之研究。私立東海大學化學工程研究所碩士論文。 王三郎。1999。應用微生物學。高立圖書有限公司。 曾穎玉。1999。紅麴菌作為肉品醃漬材料利用之研究。國立中興大學 畜產學系博士論文。 蘇遠志,黃世佑。1999。微生物化學工程學。華香園出版社。 吳惠娟。2000。家禽內臟酵素作為肉類嫩化劑之研究。國立中興大學 畜產學系碩士論文。 陳明造。2000。肉品加工理論與應用 (修正版)。藝軒圖書出版社。 胡勝,陳敏,李自強。2002。皮膠原蛋白的酵素法提取及在高附加值 領域的應用。皮革工程學。 賈玉祥。2004。台灣水牛資源之開發與利用。畜產專訊。 何國慶,丁立孝。2007。食品酵素學。五南圖書出版公司。 郭文彥。2009。衍自家禽廢棄物之高溫放線菌角蛋白酶與蛋白酶特性 分析及其在豬毛水解上之應用。國立中興大學動科學所碩士論 文。 Abarca, M. L., F. Accensi, M. R. Bragulat and F. J.Cabanes. 2001. Current importance of ochratoxin A-producing Aspergillus spp. Journal of Food Protection 64: 903-906. Adler-Nissen, J. 1986. Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers.Albin, R. L. 2000. Basal ganglia neurotoxins. Neurologic Clinics 18: 665- 680. Ashie, I. N. A., T. L. Sorensen and P. M. Nielsen. 2002. Effect of papain and a microbial enzyme on meat proteins and beef tenderness. Journal of Food Science 67: 2138-2142. Battaglino, R. A., M. Huergo, A. M. R. Pilosof and G. B. Bartholomai. 1991. Culture requirements for the production of protease by Aspergillus oryzae in solid state fermentation. Applied Microbiology and Biotechnology 35: 292-296. Baublits, R. T., A. H. Brown, F. W. Pohlman, D. C. Rule, Z. B. Johnson and D. O. Onks.2006. Fatty acid and sensory characteristics of beef from three biological types of cattle grazing cool-season forages supplemented with soyhulls. Meat Science 72: 100-107. Benito, M. J., M. Rodriguez, R. Acosta and J. J. Cordoba. 2003. Effect of the fungal extracellular protease EPg222 on texture of whole pieces of pork loin. Meat Science 65: 877-884. Bennett, J. W. 1987. Mycotoxins, mycotoxicoses, mycotoxicology and Mycopathologia. Mycopathologia 100: 3-5.Benyon, M. and J. S Bond. 1989. Proteolytic enzymes: a piratical approach. pp. 57-65. IRL Press. Bergmann, M. and J. S. Fruton. 1941. The specificity of proteases. Advanced enzymology: 1: 63-98. Blumenthal, C. Z. 2004. Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regulatory Toxicology and Pharmacology 39: 214-228. Boleman, S. J., S. L. Boleman, R. K. Miller, J. F. Taylor, H. R. Cross, T. L. Wheeler, M. Koohmaraie, S. D. Shackelford, M. F. Miller, R. L. West, D. D. Johnson and J. W. Savell. 1997. Consumer evaluation of beef of known categories of tenderness. Journal of Animal Science 75: 1521-1524. Broda, D. M., K. M. De Lacy, R. G. Bell, T. J. Bragiins and R. L. Cook. 1996. Psychrotrophic Clostridium spp. associated with "blown pack" spoilage of chilled vaccum- packed red meats and dog rolls in gasimpermeable plastic casings. International Journal of Food Microbiology 29: 335-352. Broda, D. M., D. J. Saul, P. A. Lawson, R. G. Bell and D. R. Musgrave. 2000. Clostridium gasigenes sp. nov. a psychrophile causing spoilage of vaccum-packed meat. International Journal of Systematic and Evolutionary Microbiology 50: 107-118. Calkins, C. R. and G. Sullivan. 2007. Adding enzymes to improve beef tenderness. National Cattlemen’s Beef Association. Carvalho, A. P. and B. Leo. 1967. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. Journal of General Physiology 50: 1327-1352. Cayre, M. E., G. Vignolo and O. Garro. 2003. Modeling lactic acid bacteria growth in vacuum-packaged cooked meat emulsions stored at three temperatures. Food Microbiology 20: 561-566. Chen, Q., G. He, Y. Jiao and H. Ni. 2006. Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chemistry 98: 624-629. Choe, J. H., A. Jang, E. S. Lee, J. H. Choi, Y. S. Choi, D. J. Han, H. Y. Kim, M. A. Lee, S. Y. Shim and C. J. Kim. 2011. Oxidation and color stability of cooked ground pork containing louts leaf (Nelumbo nucifera) and barley leaf (Hordeum vulgare) powder during refrigerated storage. Meat Science 87: 12-18. Claudia, C. H. and R. A. Finkelstein. 1993. Bacterial extracellular zinc-containing metalloproteases. Microbiology Reviews 57: 823-837. Dainty, R. H., R. A. Edwards, C. M. Hibbard and J. J. Marnewick. 1989. Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperatures. Journal of Applied Bacteriology 66: 281-289. Daniel, E. E., C. van Breemen, W. P. Schilling and C. Y. Kwan. 1995. Regulation of vascular tone: cross-talk between sarcoplasmic reticulum and plasmalemma. Canadian Journal of Physiology and Pharmacology 73: 551- 557. Davies, K. E. and K. J. Nowak. 2006. Molecular mechanisms of muscular dystrophies: old and new players. Nature Reviews Molecular Cell Biology 7: 762-773. Dayton, W. R., D. E. Goll, M. H. Stromer, W. J. Reville, M. G. Zeece and R. M. Robson. 1975. In cold spring Harbour conference in cell proliferation. 2-Proteases and biological control, pp. 551. Dransfield, E., D. J. Etherington and M. A. Taylor. 1992. Modelling post-mortem tenderisation-II: Enzyme changes during storage of electrically stimulated and non- stimulated beef. Meat Science 31: 75-84. Ducastaing, A., C. Valin, J. Schollmeyer and R. Cross. 1985. Effects of electrical stimulation on post-mortem changes in the activities of two Ca dependent neutral proteinases and their inhibitor in beef muscle. Meat Science 15: 193-202. Eijsink, V. G., O. R. Veltman, W. Aukema, G. Vriend and G. Venema. 1995. Structural determinants of the stability of thermolysin-like proteinases. Nature Structural Biology 2: 374-379. El-Gharbawi, M. and J. R. Whitaker. 1963. Fractionation and Partial Characterization of the Proteolytic Enzymes of Stem Bromelain. Biochemistry 2: 476-481. Environmental Protection Agency (EPA), 1997. Final decision document: TSCA section 5(H) (4) exemption for Aspergillus niger. Attachment I. Item: 3171. FDA. 1996. Bacteriological Analytical Manual (BAM). FDA. 1999. Carbohydrase and protease enzyme preparations derived from Bacillus subtilis or Bacillus amyloliquefaciens; Affirmation of GRAS status as direct food ingredients. 21 CFR. 19887-19896. Available online: http://frwebgate.access.gpo. gov cgi- bin/getdoc.cgi?dbname=1999_register&docid=99-10011- filed.pdf. Garcia-Gomez, M. J., S. Huerta-Ochoa, O. Loera-Corral and L. A. Prado-Barragan. 2009. Advantages of a proteolytic extract by Aspergillus oryzae from fish flour over a commercial proteolytic preparation. Food Chemistry 112: 604-608. Gerelt, B., Y. Ikeuchi and A. Suzuki. 2000. Meat tenderization by proteolytic enzymes after osmotic dehydration. Meat Science 56: 311-318. Goll, D. E., V. F. Thompson, H. Li, W. Wei and J. Cong. 2003. The calpain system. Physiological Reviews 83: 731- 801. Gornall, A. C., C. J. Bardawill and M. M. David. 1949. Determination of Serum Proteins by means of the biuret reaction. Journal of Biological Chemistry 177: 751-767. Gottschall, G. Y. and M. W. Kies. 1942. Digestion of beef by papain. Food Research 7: 373-381. Gould, J. B. 1975. Enzyme data, In: handbool of enzyme biotechnology (Wise-man, A., ed.). pp. 128-162. Ellis Horwood Ltd., Chichester. Gruber, S. L., J. D. Tatum, J. A. Scanga, P. L. Chapman, G. C. Smith and K. E. Belk. 2006. Effects of postmortem aging and USDA quality grade on Warner-Bratzler shear force values of seventeen individual beef muscles. Journal of Animal Science 84: 3387-3396. Gupta, R., Q. K. Beg and P. Lorena. 2002. Bacterial alkaline protease: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59: 15-32. Haenni, A. L., M. Robert, W. Vetter, L. Roux, M. Barbier and E. Lederer. 1965. [Chemical Structure of Aspergellomarasmines a and B]. Helvetica Chimica Acta 48: 729-750. Hartley, B. S. 1960. Proteolytic enzymes. Annual Review of Biochemistry 29: 45-72. Hata, Y., H. Ishida, E. Ichikawa, A. Kawato, K. Suginami and S. Imayasu. 1998. Nucleotide sequence of an alternative glucoamylase-encodting gene (glaB) expressed in solid-state culture of Aspergillus oryzae. Gene 207: 127-134. Hernandez-Macedo, M. L., G. V. Barancelli, C. J. Contreras- Castillo. 2011. Microbial deterioration of vacuum- packaged chilled beef cuts and techniques for microbiota detection and characterization: a review. Brazilian Journal of Microbiology 42: 1-11. Holker, U. and J. Lenz. 2005. Solid state fermentation: Are there any biotechnological advantages?. Current Opinion in Microbiology 8:301-306. http://en.wikipedia.org/wiki/File:Induced_fit_diagram.svg. http://en.wikipedia.org/wiki/File:Fischer_esterification_mec hanism.svg. Hu, T., X. Qv, Z. Hu, G. Chen and Z. Chen. 2011. Expression, molecular characterization and detection of lipoxygenase activity of tomloxD from tomato. African Journal of Biotechnology 10: 490-498. Imanaka, H., S. Tanaka, B. Feng, K. Imamura and K. Nakanishi. 2010. Cultivation characteristics and gene expression profiles of Aspergillus oryzae by membrane- surface liquid culture, shaking-flask culture, and agar- plate culture. Journal of Bioscience and Bioengineering 109: 267-273. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, C. S. Chang. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochemistry 38: 155-159. Kang, C. K. and E. E. Rice. 1970. Degradation of various meat fractions by tenderizing enzymes. Journal of Food Science 35: 563-565. Kemp, C. M., R. G. Bardsley and T. Parr. 2006. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. Journal of Animal Science 84:2841- 2846. Kim, H. and Taub, I.A. 1991. Specific degradation of myosin in meat by bromelain. Food Chemistry 40: 337-343. Koohmaraie, M., A. S. Babiker, R. A. Merkel and T. R. Dutson. 1988. Role of Ca++-dependent proteases and lysosomal-enzymes in postmortem changes in bovine skeletal muscle. Journal of Food Science 53: 1253-1257. Koohmaraie, M., J. D. Crouse and H. J. Mersmann. 1989. Acceleration of postmortem tenderization in ovine carcasses through infusion of calcium chloride: effect of concentration and ionic strength. Journal of Animal Science 67: 934-942. Koohmaraie, M., M. P. Kent, S. D. Shackelford, E. Veiseth and T. L. Wheeler. 2002. Meat tenderness and muscle growth: is there any relationship? Meat Science 62: 345- 352. Kumura, H., T. Ishido and K. Shimazaki. 2011. Production and partial purification of proteases from Aspergillus oryzae grown in a medium based on whey protein as an exclusive nitrogen source. Journal of Dairy Science 94: 657-667. Laemmli, U. K., E. Molbert, M. Showe and E. Kelenberger. 1970. Form-determining function of genes required for the assembly of the head of bacteriophage T4. Journal of Molecular Biology 49: 99-113. Landmann, W. A. 1963. Enzymes and their influence on meat tenderness. In: Proceedings Meat Tenderness Symposium, Campbell’s Soup Company. Camden, NJ, pp. 87-98. Lawrie, R. A. 1992. Conversion of muscle into meat: biochemistry. In D. A. Leward, D. E. Johnston and M. K. Knight (Eds.), The chemistry of muscle based foods, pp. 43-61. Cambridge, UK: The Royal Society of Chemistry. Liu, K.S. 1999. Soybean. pp. 281-283. Gaithersburg, MD: Aspen Publishers Inc. Li, Y. Y., R. C. Yu and C. C. Chou. 2010. Some biochemical and physical changes during the preparation of the enzyme-ripening sufu, a fermented product of soybean curd. Journal of Agricultural and Food Chemistry 58: 4888-4893. Lui, K. S. 1999. Soy beans. Chemistry, technology, and utilization. Aspen publishing, Maryland. Machida, M., K. Asai, M. Sano, T. Tanaka, T. Kumagai, G. Terai, K. Kusumoto, T. Arima, O. Akita, Y. Kashiwagi, K. Abe, K. Gomi, H. Horiuchi, K. Kitamoto, T. Kobayashi, M. Takeuchi, D. W. Denning, J. E. Galagan, W. C. Nierman, J. Yu, D. B. Archer, J. W. Bennett, D. Bhatnagar, T. E. Cleveland, N. D. Fedorova, O. Gotoh, H. Horikawa, A. Hosoyama, M. Ichinomiya, R. Igarashi, K. Iwashita, P. R. Juvvadi, M. Kato, Y. Kato, T. Kin, A. Kokubun, H. Maeda, N. Maeyama, J. Maruyama, H. Nagasaki, T. Nakajima, K. Oda, K. Okada, I. Paulsen, K. Sakamoto, T. Sawano, M. Takahashi, K. Takase, Y. Terabayashi, J. R. Wortman, O. Yamada, Y. Yamagata, H. Anazawa, Y. Hata, Y. Koide, T. Komori, Y. Koyama, T. Minetoki, S. Suharnan, A. Tanaka, K. Isono, S. Kuhara, N. Ogasawara and H. Kikuchi. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157- 1161. McConn, J. D., D. Tsuru and K. T. Yasunobu. 1964. Bacillus subtilis neutral proteinase: I. A zinc enzyme of high specific activity. Journal of Biological Chemistry 239: 3706-3715. McKeith, F. K., M. S. Brewer and K. A. Bruggen. 1994. Effects on enzyme application on sensory, chemical, and processing characteristics of beef steaks and roasts. Journal of Muscle Foods 5: 149-164. Melendo, J. A., J. A. Beltran, I. Jaime, R. Sancho and P. Roncales. 1996. Limited proteolysis of myofibrillar proteins by bromelain decreases toughness of coarse dry sausage. Food Chemistry 57: 429-433. Mikami, Y., Suzuki, T., 1983. Novel microbial inhibitors of angiotensin-converting enzyme, aspergillomarasmines A and B. Agricultural Biology and Chemistry 47: 2693-2695. Moller, A. J., T. Vestergaard and J. Wismer-Pederson. 1973. Myofibril fragmentation in bovine longissimus dorso as an index of tenderness. Journal of Food Science 38: 824- 825. Morita, M., H. Shimamura, N. Ishida, K. Imamura, T. Sakiyama and K. Nakanishi. 2004. Characteristics of alpha-glucosidase production from recombinant Aspergillus oryzae by membrane-surface liquid culture in comparison with various cultivation methods. Journal of Bioscience and Bioengineering 98: 200-206. Mulder, F. A. A., D. Schipper, R. Bott and R. Boelens. 1999. Altered flexibility in the substrate-binding site of related native and engineered high-alkine Bacillus subtilisins. Journal of Molecular Biology 292: 111-123. Nakadai, T., S. Nasuno and N. Iguchi. 1972. The action of peptidase from Aspergillus sojae in digestion of soybean protein. Agricultural Biology and Chemistry 38: 261-268. Narahara, H., Y. Koyama, T Yoshida, S Pichangkura, R. Ueda and H. Taguchi. 1982. Growth and enzyme production in soild-state culture of Apergillus oryzae. Journal of Fermentation Technology 60: 311-319. Naveena, B. M., S. K. Mendiratta and A. S. Anjaneyulu. 2004. Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Science 68: 363-369. Neely, T. R., C. L. Lorenzen, R. K. Miller, J. D. Tatum, J. W. Wise, J. F. Taylor, M. J. Buyck, J. O. Reagan and J. W. Savell. 1998. Beef customer satisfaction: role of cut, USDA quality grade, and city on in-home consumer ratings. Journal of Animal Science 76: 1027-1033. Ockerman, H. W. 1981. Meat and additives analysis. in: Quality Control of Post-mortem Muscle Tissue. Ohio State University. pp. 121-130. Offer, G. and J. Trinick. 1983. On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Science 8:245-281. Ogawa, A., A. Yasuhara, T. Tanaka, T. Sakiyama and K. Nakanishi. 1995. Production of neutral protease by membrane-surface liquid culture of Aspergillus oryzae IAM2704. Journal of Fermentation and Bioengineering 80: 35-40. Olson, D. G., F. C. Parrish, Jr., and M. H. Stromer. 1976. Myofibril fragmentation and shear resistance of three bovine muscles during postmortem storage. Journal of Food Science 41: 1036-1041. Olson, D. G., F. C. Parrish, W. R. Dayton and D. E. Goll. 1977. Effect of postmortem storage and calcium activated factor on the myofibrillar proteins of bovine skeletal muscle. Journal of Food Science 42: 117-120. Paul, R. J. 1998. The role of phospholamban and SERCA3 in regulation of smooth muscle-endothelial cell signalling mechanisms: evidence from gene-ablated mice. Acta Physiologica Scandinavica 164: 589-597. Pierson, M. D., D. L. Collins-Thompson and Z. J. Ordal. 1970. Microbiological, sensory, and pigment changes of aerobically and anaerobically packaged beef. Food Technology 24: 1171-1175. Pietrasik, Z. and P. J. Shand. 2006. Effect of aspartic protease from Aspergillus oryzae on the tenderness of beef. In Proceedings from the 52th international congress of meat science, Dublin, Ireland pp. 475-476. Pietrasik, Z., J. L. Aalhus, L. L. Gibson and P. J. Shand. 2010. Influence of blade tenderization, moisture enhancement and pancreatin enzyme treatment on the processing characteristics and tenderness of beef semitendinosus muscle. Meat Science 84: 512-517. Raghavarao, K. S., V. T. Ranganathan and G. N. Karanth. 2003. Biochemical Engineering Journal 13: 127-135. Rao, A. L., B. Cooper and C. M. Deom. 1998. Defective Movement of Viruses in the Family Bromoviridae Is Differentially Complemented in Nicotiana benthamiana Expressing Tobamovirus or Dianthovirus Movement Proteins. Phytopathology 88: 666-672. Reed, G. 1975. Enzymes in food processing. 2nd ed a. pp.130 b. pp. 263 Academic Press. Alder-Nissen, J. 1986. Enzyme hydrolysis of food proteins. pp. 19-20. Elsevier Applied Science publ. London and New York. Sandhya, C., A. Sumantha, G. Szakacs and A. Pandey. 2005. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry 40: 2689-2694. SAS Institute. 1995. SAS companion for the Microsoft Windows Environment. Cary, NC. SAS Institute Inc. Schecter, I. and A. Berger. 1967. On the size of the active site in protease. I. papain. Biochemical and Biophysical Research Communications 27: 157-162. Sentandreu, M. A., S. Stoeva, M. C. Aristoy, K. Laib, W. Voelter and F. Toldre. 2003. Identification of small peptides generated in Spanish dry-cured ham. Journal of Food Science 68: 64-69. Shin, H. G., Y. M. Choi, H. K. Kim, Y. C. Ryu, S. H. Lee and B. C. Kim. 2008. Tenderization and fragmentation of myofibrillar proteins in bovine longissimus dorsi muscle using proteolytic extract from Sarcodon aspratus. LWT 41: 1389-1395. Sohl, J. L., A. K. Shiau, S. D. Rader, B. J. Wilk and D. A. Agard. 1997. Inhibition of alpha-lytic protease by pro region C-terminal steric occlusion of the active site. Biochemistry 36: 3894-3902. Stiles, M. E. 1996. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70: 331-345. Sullivan, G. A. and C. R. Calkin. 2010. Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Science 85: 730-734. Takagi, H., M. Kondou, H. Tomoaki, S. Nakamori, Y.-C. H. Tsai and M. Yamasaki. 1992. Effects of an alkaline elastase from an alkalophilic Bacillus strain on the tenderization of beef meat. Journal of Agricultural and Food Chemistry 40: 2364-2368. Tappel, A. L., D. S. Miyada, C. Sterling and V. P. Maier. 1956. Meat tenderization. II. Factors affecting the tenderization of beef by papain. Food Research 21: 375-383. Tarte, R. 2009. Ingredients in meat products: Properties, functionality and applications. Springer, New York. Taylor, R. G., G. H. Geesink, V. F. Thompson, M. Koohmaraie and D. E. Goll. 1995. Is z-disk degradation responsible for postmortem tenderization. Journal of Animal Science 73: 1351-1367. Toohey, E. S., M. J. Kerr, R. van de Ven and D. L. Hopkins. 2011. The effect of a kiwi fruit based solution on meat traits in beef m. semimembranosus (topside). Meat Science 88: 468-471. Veiseth, E., S. D. Shackelford, T. L. Wheeler and M. Koohmaraie. 2001. Technical note: comparison of myofibril fragmentation index from fresh and frozen pork and lamb longissimus. Journal of Animal Science 79: 904-906. Vieira, C., M. T. Diaz, B. Martinez and M. D. Garcia-Cachan. 2009. Effect of frozen storage conditions (temperature and length of storage) on microbiological and sensory quality of rustic crossbred beef at different states of ageing. Meat Science 83: 398-404. Vik, S. B. 2002. Mechanisms of Catalysis. Journal of Biological Chemistry 14: 5310. Vishwanatha, K.S., A.G. Rao and S. A. Singh. 2009. Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chemistry 114: 402-407. Vishwanatha, K. S., A. G. Appu Rao and S. A. Singh. 2010. Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341. Applied Microbiology and Biotechnology 85: 1849-1859. Vishwanatha, K. S., A. G. Rao and S. A. Singh. 2010. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters. Journal of Industrial Microbiology and Biotechnology 37: 129-138. Wada, M., T. Suzuki, Y. Yaguti and T. Hasegawa. 2002. The effect of pressure treatments with kiwi fruit protease on adult cattle semitendinosus muscle. Food Chemistry 78: 167-171. Walter, H. E. 1981. Method with haemoglobin, casein and azocoll as substrate. In:Methods of Enzymatic Analysis. 5: 270-275. (ed. H. U. Bergmeyer). Verlag Chemie GmbH: D-6940 Weinbeim. Wandersman, C., P. Delepelaire, S. Letoffe and M. Schwartz. 1987. Characterization of Erwinia chrysanthemi extracellular proteases: cloning and expression of the protease genes in Escherichia coli. Journal of Bacteriology 169: 5046-5053. Wang, H., C. E. Weir, M. L. Birkner and B. Ginger. 1958. Studies on enzymatic tenderization of meat. III. Histological and panel analyses of enzyme preparations from three distinct sources. Food Research 23: 423-438. Zapelena, M. J., I. Astiasaran and J. Bello. 1999. Dry fermented sausages made with a protease from Aspergillus oryzae and/or a starter culture. Meat Science 52: 403-409. Zhang, J. H., E. Tatsumi, J. F. Fan and L. T. Li. 2007. Chemical components of Aspergillus-type Douchi, a Chinese traditional fermented soybean product, change during the fermentation process. International Journal of Food Science and Technology: 42: 263-268. Zhang, S.H. and Y. Liu. 2000. Prepare Technology of Seasoning. pp. 85-95. Guangzhou: South China University of Technology Press.
摘要: 
麴菌 (Aspergillus oryzae) 為傳統上釀造醬油、醬菜或酒類之菌元,其在發酵過程中會產生澱粉酶、蛋白酶等酵素,這些酵素近年來廣泛地應用於食品、藥品及其他產業中;而肉品加工業中,牛肉之嫩度為一重要指標,許多研究指出牛後腿肉具有使消費者難以接受之硬度,因此需另外施以物理性或化學性之嫩化方式來提升其嫩度,而先前文獻指出於肉品中添加外源性酵素可有效地促使肌原纖維與膠原蛋白降解,進而提升肉品嫩度並產生風味物質。故本篇試驗將萃取麴菌之蛋白酶且分析其特性,後於牛後腿肉中添加衍自麴菌之不同酵素活性 (20與40 U) 之中性蛋白酶,再將其放置於10 ℃與15 ℃下進行熟成,之後探討牛後腿肉在熟成期間其嫩度與品質之變化。
結果顯示:麴菌接種至固態基質中進行發酵,於發酵第72小時產生之蛋白質濃度、蛋白酶活性及蛋白酶比活性最高,且其蛋白酶於酸鹼值 pH 7 與溫度50 ℃之作用環境下具有最佳活性;另此蛋白酶在酸性 (pH 5) 與中溫 (30 與 40 ℃) 環境下穩定度佳,而以 SDS-PAGE 分析麴菌粗酵素液之分子量大小可發現,其在35 kDa 有明顯之環帶產生;另外,在牛後腿肉中添加麴菌粗酵素液之分析試驗中可發現,對照組及各處理組之滴液損失率、烹煮失重、總生菌數、乳酸菌數、 MFI 及 VBN 值皆隨熟成時間增加而提升,40 U 與 20 U 處理組之 VBN 值與 MFI 於各時間點皆較對照組高,且在15 ℃熟成之處理組上升趨勢較10 ℃之處理組快,另於 pH 值試驗中,VBN 值雖逐漸上升,但由於乳酸菌之生長,因此使對照組與蛋白酶處理組於熟成期間 pH 值皆小於 pH 6,而於截切值、截切能量測定與感官品評試驗中可發現,添加麴菌粗酵素液處理組至熟成後期其截切值與截切能量顯著較對照組低,而感官品評嫩度評分則顯著高於對照組,且在熟成溫度15 ℃時有較明顯之效果,另對照組與各處理組在其他感官品評之測試項目中皆無顯著差異,而於 SDS-PAGE 試驗中可明顯觀察到 40 U 處理組在熟成後期 (於10 ℃與15 ℃下分別熟成14天與7天) 牛肉之肌原纖維與肌漿蛋白質被降解之現象,且以掃描式電子顯微鏡觀察肌纖維之顯微結構可發現,添加蛋白酶之處理組相較於對照組其肌纖維有明顯斷裂之情形。綜觀上述,麴菌所產生之蛋白酶應用於牛後腿進行熟成嫩化,可快速且有效地降解肌原纖維與肌漿蛋白質,促使牛肉嫩度提升,且對肉品無不良影響,因此麴菌粗酵素液具有應用於肉品嫩化之潛力。

Aspergillus oryzae are wildly utilized in the production of protease and amylase in addition to the production of traditional fermented foods such as soy sauce and beverages. Tenderness is an important driver of beef consumer satisfaction and as such has been extensively investigated. Many reports indicated a high level of unacceptably tough retail cuts originating from beef round. There are several means for tenderizing meat, both chemically and physically. Treatment with proteolytic enzymes is one of the popular methods for meat tenderization, and exogenous enzymes added to meat causing degradation to both myofibrillar and collagen proteins. The aim of this study was to investigate the characterization of protease from A. oryzae and evaluate the tenderizing effect of beef rounds.
The results showed that the maximum protein concentration, protease activity and specific amount protease of A. oryzae was obtained at 72 hours of cultivation. The protease from A. oryzae had an optimum pH of around 7 and its optimum temperature was approximately 50 ℃. In addition, the protease were quite stable at the acidic condition and around 30-40 ℃. SDS-PAGE of protease showed the molecular mass was 35 kDa. In the drip loss, cooking loss, total plate count, lactic acid bacteria count, MFI and VBN value determination of the beef, all treatments were increased with aging time at 10 and 15 ℃. In addition, the MFI and VBN value of the treatments with protease from A. oryzae (20 U and 40 U) were higher than control during aging. On the other hand, the VBN value of all treatments increasing gradually, but due to the growth of lactic acid bacteria, thus the pH value of all treatments were less than pH 6 during aging period. In the analysis of peak force, shearing energy and sensory evaluation, a significant reduction in peak force values and shearing energy values were observed in all protease-treated samples compare to control, and the protease-treated samples also received better scores for tenderness. SDS-PAGE of the myofibrillar protein and sarcoplasmic protein also revealed extensive proteolysis and reduction in number of protein bands in the treatments with protease from A. oryzae (20 U and 40 U). The microstructure of muscle fibers showed loss of muscle fiber structure only in protease-treated samples. In conclusion, the protease from A. oryzae degraded the myofibrillar protein and sarcoplasmic protein of meat, and it is the main factor contributing to the development of tenderness. Therefore, the protease from A. oryzae could be of potential to improve tenderness of meat.
URI: http://hdl.handle.net/11455/25648
其他識別: U0005-0207201215550500
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.