Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25649
DC FieldValueLanguage
dc.contributor黃政恆zh_TW
dc.contributorHuang, Jang-Hungen_US
dc.contributor.author韋飛斯zh_TW
dc.contributor.authorThomas, Wi-Afedzien_US
dc.contributor.other土壤環境科學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T07:25:56Z-
dc.date.available2014-06-06T07:25:56Z-
dc.identifierU0005-2901201313215200en_US
dc.identifier.citationA crash course in fertilizers. 2013. Sunset Publishing Corporation Available at http://www.sunset.com/garden/garden-basics/crash-course-fertilizers-00400000015144/ (verified 24 January 2013). Abdus-Salam, N., and F.A. Adekola. 2006. Comparative dissolution of natural goethite samples in HCl and HNO3. J. Appl.Sci. Environ.Mgt. 10(2): 11 –17. Albrecht-Gary, A.M., and A.L. Crumbliss. 1998. Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. p. 239–327. In Sigel, A., Sigel, H. (eds.), Metal Ions In Biological Systems. Marcel Dekker. Anderson, D.M., P.M. Glibert, and J.M. Burkholder. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25(4): 704–726. Arai, Y., and D.L. Sparks. 2001. ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. J. Colloid Interf. Sci. 241: 317–326. Asher, C.J., and J.F. Loneragan. 1967. Response of plants to phosphate concentrations in solution cultures, I: Growth and phosphorus contents. Soil Sci. 103: 225–233. Atkinson, R.J., R.L. Partiff, and R.S.C. Smart. 1974. Infrared study of phosphate adsorption on goethite. J. Chem. Soc. Farad. T. 1 70: 1472. Bandstra, J.Z., and S.L. Brantley. 2008. Data Fitting Techniques with Applications to Mineral Dissolution Kinetics. In Brantley, S.L., Kubicki, D.J., White, A.F. (eds.), Kinetics of Water-Rock Interaction. Springer, New York. Barron, V., M. Herruzo, and J. Torrent. 1988. Phosphate adsorption by aluminous hematites of different shapes. Soil Sci. Soc. Am. J. 52: 647–651. El Batouti, M. 2003. Cementation reactions in the presence of nitrogen compounds. J. Colloid Interf. Sci. 263(2): 548–553. Bi, Y., D.L. Hesterberg, and O.W. Duckworth. 2010. Siderophore-promoted dissolution of cobalt from hydroxide minerals. Geochim. Cosmochim. Acta 74(10): 2915–2925. Biber, M. V., M.D.S. Afonso, and W. Stumm. 1994. The coordination chemistry of weathering: IV. Inhibition of the dissolution of oxide minerals. Geochim. Cosmochim. Acta 58(9): 1999–2010. Birus, M., Z. Bradic, G. Krznaric, N. Kujundzic, M. Pribanic, P.C. Wilkins, and R.G. Wilkins. 1987. Kinetics of stepwise hydrolysis of ferrioxamine B and formation of diferrioxamine B in acid perchlorate solution. Inorg. Chem. 26: 1000–1005. Birus, M., Z. Bradic, N. Kujundzic, M. Pribanic, P.C. Wilkins, and R.G. Wilkins. 1985. Stopped-flow and rapid-scan spectral examination of the iron(III)-acetohydroxamic acid system. Inorg. Chem. 24: 2980–2983. Bondietti, G., J. Sinniger, and W. Stumm. 1993. The Reactivity of Fe(III)(hydr)oxides: effects of ligands inhibiting the dissolution. Colloids Surf. A 79: 157–167. Boopathi, E., and K.S. Rao. 1999. A siderophore from Pseudomonas putida type A1: structural and biological characterization. Biochim. Biophys. Acta 1435(1-2): 30–40. Borer, P., S.M. Kraemer, B. Sulzberger, S.J. Hug, and R. Kretzschmar. 2009. Photodissolution of lepidocrocite (γ-FeOOH) in the presence of desferrioxamine B and aerobactin. Geochim. Cosmochim. Acta 73: 4673–4687. Borggaard, O.K. 1991. Effects of phosphate on iron oxide dissolution in ethylenediamine-N, N, N’N''-tetraacetic acid and oxalate. Clays Clay Miner. 39(3): 324–328. Borgias, B., A.D. Hugi, and K.N. Raymond. 1989. Isomerization and solution structures of desferrioxamine B complexes of Al3+ and Ga3+. Inorg. Chem. 28: 3538–3545. Boukhalfa, H., and A.L. Crumbliss. 2002. Chemical aspects of siderophore mediated iron transport. BioMetals 15: 325–339. Brady, P. V., and J. V. Walther. 1992. Surface chemistry and silicate dissolution at elevated temperatures. Am. J. Sci. 292: 639–658. Brainard, J.R., B.A. Strietelmeier, P.H. Smith, P.J. Langston-Unkefer, M.E. Barr, and R.R. Ryan. 1992. Actinide binding and solubilization by microbial siderophores. Radiochim. Acta 58/59: 357–363. Brantley, S.L. 2008. Kinetics of mineral dissolution. p. 151–210. In Brantley, S.L., Kubicki, J.D., White, A.F. (eds.), Kinetics of water-rock interaction. Brantley, S.L., and Y. Chen. 1995. Chemical weathering rates of pyroxenes and amphiboles. p. 119–172. In White, A.F., Brantley, S.L. (eds.), Chemical Weathering Rates of Silicate Minerals: Mineralogical Society of America, Reviews in Mineralogy. Buckingham, S.E., J. Neff, B. Titiz-Maybach, and R.L. Reynolds. 2010. Chemical and textural controls on phosphorus mobility in drylands of southeastern Utah. Biogeochemistry-Us. 100(1-3): 105–120. Cakmak, I. 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 247(1): 3–24. Carrasco, N., R. Kretzschmar, M.-L. Pesch, and S.M. Kraemer. 2008. Effects of anionic surfactants on ligand-promoted dissolution of iron and aluminum hydroxides. J. Colloid Interf. Sci. 321(2): 279–87. Casey, W.H., and G. Sposito. 1992. On the temperature dependence of mineral dissolution rates. Geochim. Cosmochim. Acta 56: 3825–3830. Catalano, J.G., Z. Zhang, P. Fenter, and M.J. Bedzyk. 2006. Inner-sphere adsorption geometry of Se(IV) at the hematite (100)-water interface. J. Colloid Interf. Sci. 297(2): 665–71. Chairat, C., J. Schott, E. Oelkers, J. Lartigue, and N. Harouiya. 2007. Kinetics and mechanism of natural fluorapatite dissolution at 25°C and pH from 3 to 12. Geochim. Cosmochim. Acta 71(24): 5901–5912. Chang, H.-S., G. V Korshin, Z. Wang, and J.M. Zachara. 2006. Adsorption of uranyl on gibbsite: A time-resolved laser-induced fluorescence spectroscopy study. Environ. Sci. Technol. 40(4): 1244–9. Cheah, S.-F., S.M. Kraemer, J. Cervini-Silva, and G. Sposito. 2003. Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chem. Geol. 198(1-2): 63–75. Chitrakar, R., S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, and T. Hirotsu. 2006. Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interf. Sci. 298(2): 602–608. Christoffersen, M.R., J. Dohrup, and J. Christoffersen. 1998. Kinetics of growth and dissolution of calcium hydroxyapatite in suspensions with variable calcium to phosphate ratio. J. Cryst. Growth 186: 283–290. Clemenston, L.A., and S.E. Wayte. 1992. The effect of frozen storage of open-ocean seawater samples on the concentration of dissolved phosphate and nitrate. Water Res. 26: 1171–1176. Cocozza, C., C.C.G. Tsao, and S.F. Cheah. 2002. Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores. Geochim. Cosmochim. Acta 66(3): 431–438. Colombo, C., V. Barron, and J. Torrent. 1994. Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochim. Cosmochim. Acta 58: 1261–1269. Cordell, D., J.-O. Drangert, and S. White. 2009. The Story of Phosphorus: Global food security and food for thought. Global Environ. Chang. 19: 292–305. Cornell, R.M., and U. Schwertmann. 1996. The Iron Oxides. VCH Verlag, Weinheim. Cornell, R.M., and U. Schwertmann. 2003. The iron oxides: structure, properties, reactions, occurrences and uses. 2nd ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. Crowley, D.E., C.P.P. Reid, and P.J. Szaniszlo. 1987. Microbial siderophores as iron sources for plants. p. 370–386. In Winkelmann, G., Van der Helm, D., Neilands, J.B. (eds.), Iron Transport in Animals, Plants, and Microorganisms. VCH, Mannheim, Germany. Crumbliss, A. 1991. Aqueous solution equilibrium and kinetic studies of iron siderophore and model siderophore complexes. p. 177–232. In Winkelmann, G. (ed.), Handbook of Microbial Iron Chelates. CRC Press. Crumbliss, A.L., and J.M. Harrington. 2009. Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. p. 179–250. In Eldik, R. van, Hubbard, C.D. (eds.), Adv. Inorg. Chem. vol. 61. Elsevier, New York. Deliyanni, E.A., E.N. Peleka, and N.K. Lazaridis. 2007. Comparative study of phosphates removal from aqueous solutions by nanocrystalline akaganeite and hybrid surfactant- akaganeite. Sep. Purif. Technol. 52: 478–486. Dertz, E.A., and K.N. Raymond. 2003. Siderophores and Transferrins. p. 141–168. In Que Jr, L., Tolman, W.E. (eds.), Comprehensive coordination chemistry II. vol. 8. Elsevier Ltd, Philadelphia, PA. Dimirkou, A., A. Ioannou, and M. Doula. 2002. Preparation, characterization and sorption properties for phosphates of hematite, bentonite and bentonite-hematite systems. J. Colloid Interf. Sci. 97(1-3): 37–61. Dominguez-Vera, J.M. 2004. Iron(III) complexation of Desferrioxamine B encapsulated in apoferritin. J. Inorg. Biochem. 98(3): 469–472. Drever, J.I., and L.L. Stillings. 1997. The role of organic acids in mineral weathering. Colloids Surf. A 120: 167–181. Dubbin, W.E., and E. Louise Ander. 2003. Influence of microbial hydroxamate siderophores on Pb(II) desorption from α-FeOOH. Appl. Geochem. 18(11): 1751–1756. Duckworth, O.W., J.R. Bargar, A.A. Jarzecki, O. Oyerinde, T.G. Spiro, and G. Sposito. 2009. The exceptionally stable cobalt(III)–desferrioxamine B complex. Mar. Chem. 113(1-2): 114–122. Duckworth, O.W., and G. Sposito. 2005. Siderophore-manganese(lll) Interactions. II. Manganite dissolution promoted by desferrioxamine B. Env. sci. technol. 39(16): 6045–6051. Eary, L.E., and D. Rai. 1989. Kinetics of Chromate Reduction by Ferrous Ions Derived from Hematite and Biotite at 25 °C. Am. J. Sci. 289: 180–213. Edwards, D.C., and S.C. Myneni. 2005. Hard and soft X-ray absorption spectroscopic investigation of aqueous Fe(III)-hydroxamate siderophore complexes. J. Phys. Chem. A 109(45): 10249–10256. Edwards, D.C., S.B. Nielsen, A.A. Jarzecki, T.G. Spiro, and S.C.B. Myneni. 2005. Experimental and theoretical vibrational spectroscopy studies of acetohydroxamic acid and desferrioxamine B in aqueous solution: Effects of pH and iron complexation. Geochim. Cosmochim. Acta 69(13): 3237–3248. Eggleston, C.M., A.G. Stack, K.M. Rosso, S.R. Higgins, A.M. Bice, S.W. Boese, R.D. Pribyl, and J.J. Nichols. 2003. The structure of hematite (α-Fe2O3) (001) surfaces in aqueous media: scanning tunneling microscopy and resonant tunneling calculations of coexisting O and Fe terminations. Geochim. Cosmochim. Acta 67(5): 985–1000. Eick, M.J., J.D. Peak, and W.D. Brady. 1999. The effect of oxyanion on the oxalate – promoted Dissolution of Goethite. Soil Sci. Soc. Am. J. 63: 1133 – 1141. Elzinga, E.J., and D.L. Sparks. 2007. Phosphate adsorption onto hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid Interf. Sci. 308(1): 53–70. Essington, M.E. 2003. Soil and water chemistry: An integrative approach. CRC Press, Boca Raton. Evers, A., R.D. Hancock, A.E. Martell, and R.J. Motekaitis. 1989. Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of Fe(III), Ga(III), In(III), Al(III), and other highly charged metal ions. Inorg. Chem. 29: 2189–2195. Fendorf, S.E., and R.J. Zasoski. 1992. Chromium(III) oxidation by gamma-MnO2. Environ. Sci. Technol. 26: 79–85. Finger, L.W., and R.M. Hazen. 1980. Crystal structures and isothermal compression of Fe2O3, Cr2O3 and V2O3 to 50 kbar. J. Appl. Phys. 51: 5362–5367. Frossard, E., L.M. Condron, A. Oberson, S. Sinaj, and J.C. Fardeau. 2000. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 29: 12–53. Furrer, G., W. Stumm, and B. Zinder. 1986. The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides. Geochim. Cosmochim. Acta 50(9): 1861–1869. Fohse, D., N. Claassen, and A. Jungk. 1988. Phosphorus efficiency of plants. Plant Soil 10: 101–109. Gao, Y., and A. Mucci. 2001. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim. Cosmochim. Acta 65: 2361–2378. Geelhoed, J.S.J.S., T. Hiemstra, W.H. Van Riemsdijk, and W.H. van Riemsdijk. 1997. Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochim. Cosmochim. Acta 61(12): 2389–2396. Gilbert, N. 2009. Environment: The disappearing nutrient. Nature 461(7265): 716–718. Goldberg, S., J.A. Davis, and J.D. Hem. 1996. The surface chemistry of aluminum oxides and hydroxides. p. 271–331. In Sposito, G. (ed.), The Environmental Chemistry of Aluminum. 2nd ed. CRC Press, Boca Raton. Goyne, K.W., S.L. Brantley, and J. Chorover. 2006. Effects of organic acids and dissolved oxygen on apatite and chalcopyrite dissolution: Implications for using elements as organomarkers and oxymarkers. Chem. Geol. 234(1-2): 28–45. Guerinot, M.L., and Y. Yi. 1994. Iron: Nutritious, Noxious, and Not Readily Available. Plant Physiol. 104(3): 815–820. Guidry, M.W., and F.T. Mackenzie. 2003. Experimental study of igneous and sedimentary apatite dissolution. Geochim. Cosmochim. Acta 67(16): 2949–2963. Haack, E.A., C.T. Johnston, and P.A. Maurice. 2008. Mechanisms of siderophore sorption to smectite and siderophore-enhanced release of structural Fe3+. Geochim. Cosmochim. Acta 72(14): 3381–3397. Harouiya, N., C. Chairat, S.J. Kohler, R. Gout, and E.H. Oelkers. 2007. The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50oC and pH from 1 to 6. Chem. Geol.: 244. Hernlem, B.J., L.M. Vane, and G.D. Sayles. 1996. Stability constants for complexes of the siderophore desferrioxamine B with selected heavy metal cations. Inorg. Chim. Acta 244(2): 179–184. Hersman, L., T. Lloyd, and G. Sposito. 1995. Siderophore-promoted dissolution of hematite. Geochim. Cosmochim. Acta 59(16): 3327–3330. Hersman, L., P. Maurice, and G. Sposito. 1996. Iron acquistion from hydrous Fe(III)-oxides by aerobic Pseudomonas sp. Chem. Geol. 132: 25–31. Hider, R.C. 1984. Siderophore mediated absorption of iron. Struct. Bond. 58: 25–87. Hiemstra, T., R. Rahnemaie, and W.H. Van Riemsdijk. 2004. Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution. J. Colloid Interf. Sci. 278(2): 282–290. Hiemstra, T., and W.H. van Riemsdijk. 1996. A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179: 488–508. Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237: 173–195. Hochella Jr., M.F., and A.F. White. 1990. Mineral–Water Interface Geochemistry (MF Hochella Jr. and AF White, Eds.). Rev. Mineral. 23: 1–16. Hocsman, A., S. Di Nezio, L. Charlet, and M. Avena. 2006. On the mechanisms of dissolution of montroydite [HgO(s)]: dependence of the dissolution rate on pH, temperature, and stirring rate. J. Colloid Interf. Sci. 297(2): 696–704. Hodges, S.C. 2010. Soil Fertility Basics, Soil Science Extension North Carolina State University certified Crop Advisor Training. Hohl, H., L. Sigg, and W. Stumm. 1980. Characterization of surface chemical properties of oxides in natural waters. Am. Chem. Soc. Adv. Chem. Ser. 189: 1–31. Holford, I.C.R., and G.E.G. Mattingly. 1975. The high- and low-energy phosphate adsorbing surfaces in calcareous soils. J. Soil Sci. 26: 407–417. Holmen, B.A., W.H. Casey, and B.A. Holmen. 1996. Hydroxamate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [α-FeOOH(s)]. Geochim. Cosmochim. Acta 60(22): 4403–4416. Hughes, M.N., and R.K. Poole. 1989. Metals and Microorganisms. Chapman and Hall, London. Huminicki, D.M.C., and F.C. Hawthorne. 2002. The crystal structure of the phosphate minerals (MJ Kohn, J Rakovan, and JM Hughes, Eds.). Rev. Mineral. 48(5): 123–253. Hunt, J.F., T. Ohno, Z. He, C.W. Honeycutt, and D.B. Dail. 2007. Inhibition of phosphorus sorption to goethite, gibbsite, and kaolin by fresh and decomposed organic matter. Biol. Fert. Soils 44(2): 277–288. Iuliano, M., L. Ciavatta, and G. De Tommaso. 2007. On the Solubility Constant of Strengite. Soil Sci. Soc. Am. J. 71(4): 1137. Jain, A., K.P.K.P. Raven, and R.H.R.H. Loeppert. 1999. Arsenite and Arsenate Adsorption on Ferrihydrite: Surface Charge Reduction and Net OH- Release Stoichiometry. Environ. Sci. Technol. 33(409): 1179– 1184. Johnson, C.A., and A.G. Xyla. 1991. The oxidation of chromium(III) to chromium(VI) on the surface of manganite (γ-MnOOH). Geochim. Cosmochim. Acta 55: 2861–2866. Kalinowski, B.E., L.J. Liermann, S.L. Brantley, A. Barnes, and C.G. Pantano. 2000a. X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim. Cosmochim. Acta 64(8): 1331–1343. Kalinowski, B.E.B., L.L.J. Liermann, S. Givens, and S.S.L. Brantley. 2000b. Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches. Chem. Geol. 169(3-4): 357–370. Kendall, T.A., and M.F. Hochella, JR. 2003. Measurement and interpretation of molecular-level forces of interaction between the siderophore azotobactin and mineral surfaces. Geochim. Cosmochim. Acta. 67(19): 3537–3546. Khare, N., J. Martin, and D. Hesterberg. 2007. Phosphate bonding configuration on ferrihydrite based on molecular orbital calculations and XANES fingerprinting. Geochim. Cosmochim. Acta 71(18): 4405–4415. Kim, J., W. Li, B.L. Philips, and C.P. Grey. 2011. Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31P NMR Study. Energy & Environmental Science 4(10): 4298Available at http://xlink.rsc.org/?DOI=c1ee02093e (verified 5 April 2012). Kim, H.J., H.S. Park, M.S. Hyun, I.S. Chang, M. Kim, and B.H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30(2): 145–152. Kohler, S.J., N. Harouiya, C. Chaırat, and E.H. Oelkers. 2005. Experimental studies of REE fractionation during water– mineral interactions: REE release rates during apatite disso-lution from pH 2.8 to 9.2. Chem. Geol. 222: 168–182. Kraemer, S.M. 2004. Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 66(1): 3–18. Kraemer, S., S.-F. Cheah, and R. Zapf. 1999a. Effect of hydroxamate siderophores on Fe release and Pb (II) adsorption by goethite. Geochim. Cosmochim. Acta 63(19): 3003–3008. Kraemer, S.M., S.F. Cheah, R. Zapf, J. Xu, K.N. Raymond, and G. Sposito. 1999b. Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochim. Cosmochim. Acta. 63: 3003–3008. Kraemer, S., and J. Hering. 1997. Influence of solution saturation state on the kinetics of ligand-controlled dissolution of oxide phases. Geochim. Cosmochim. Acta 61(14): 2855–2866. Laidler, K.J. 1987. Chemical Kinetics. 3rd ed. Harper & Row, New York. Landrot, G., M. Ginder-Vogel, and D.L. Sparks. 2010. Kinetics of Chromium(III) Oxidation by Manganese(IV) oxides using Quick Scanning X-ray Absorption fine structure Spectroscopy (Q-XAFS). Environ. sci. technol. 44(1): 143–9. Lasaga, A.C. 1998. Kinetic Theory in the Earth Sciences. Princeton University Press. Lavelle, P., R. Dugdale, R. Scholes, A.A. Berhe, E. Carpenter, L. Codispoti, A.-M. Izac, J. Lemoalle, F. Luizao, M. Scholes, P. Tre′guer, and B. Ward. 2005. Nutrient Cycling. p. 331–353. In Etchevers, J., Tiessen, H. (eds.), Ecosystems and human well-being: Current state and trends, Vol. 1. Findings of the Condition and Trends: Working Group of the Millennium Ecosystem Assessment. Island Press, Washington, D.C. Ler, A., and R. Stanforth. 2003. Evidence for surface precipitation of phosphate on goethite. Environ. Sci. Technol. 37: 2694–2700. Li, L., and R. Stanforth. 2000. Distinguishing Adsorption and Surface Precipitation of Phosphate on Goethite (alpha-FeOOH). J. Colloid Interf. Sci. 230(1): 12–21. Liang, J.-C., S.. Wang, M.K. Wang, and C.-M. Lai. 1991. Crystallization of Aluminum Phosphate. J. Chin. Agric. Chem. Soc. 30(2): 151–161. Liang, J.-C., S.. Wang, M.K. Wang, and C.-M. Lai. 1993. Crystallization of Iron (III) Phosphate. J. Chin. Agric. Chem. Soc. 31(4): 547–556. Liermann, L.J., B.E. Kalinowski, S.L. Brantley, J.G. Ferry, L.A.J.L. Iermann, B.I.E.K. Alinowski, S.U.L.B. Rantley, and J.A.G.F. Erry. 2000. Role of bacterial siderophores in dissolution of hornblende. Geochim. Cosmochim. Acta 64(4): 587–602. Lin, S.-H., H.-C. Kao, C.-H. Cheng, and R.-S. Juang. 2004. An EXFAS Study of the Structures of Copper and Phosphate Sorbed onto Goethite. Colloids Surf. A 234: 71–75. Liu, H., X. Sun, C. Yin, and C. Hu. 2008. Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 151: 616–622. Lookman, R., P. Grobet, R. Merckx, and K. Vlassak. 1994. Phosphate sorption by synthetic amorphous aluminum hydroxides-a Al-27 and P-31 solid-state MAS NMR-spectroscopy study. Eur. J. Soil Sci. 45: 37–44. Luengo, C., M. Brigante, J. Antelo, and M. Avena. 2006. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J. Colloid Interf. Sci. 300(2): 511–8. Lopez-Bucio, J., A. Cruz-Ramı́rez, and L. Herrera-Estrella. 2003. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6(3): 280–287. Madigan, M.T.T., J.M.M. Martinko, and J. Parker. 1997. Biology of Microorganisms. 8th ed. Pearson US Imports & PHIPEs, London. Manceau, A., K.L. Nagy, L. Spadini, and K. V Ragnarsdottir. 2000. Influence of anionic layer structure of Fe-oxyhydroxides on the structure of Cd surface complexes. J. Colloid Interf. Sci. 228(2): 306–316. Manecki, M., and P.A. Maurice. 2008. Siderophore promoted dissolution of pyromorphite. Soil Sci. 173: 821–830. Martell, A.E., R.M. Smith, and R.J. Motekaitis. 2004. NIST Critically Selected Stability Constants of Metal Complexes Database, NIST Standard Reference Database 46. National Institute of Standards and Technology, Gaithersburg, MD. Matzanke, B.F., G. Muller-Matzanke, and K.N. Raymond. 1984. Iron transport in Streptomyces pilosus mediated by ferrichrom siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. J. Bacteriol 160: 304–312. Maurice, P. a, E. a Haack, and B. Mishra. 2009. Siderophore sorption to clays. Biometals. 22(4): 649–658. McCiellan, G.H., and T.P. Hignett. 1978. Some economic and technical factors affecting use of phosphate raw materials. p. 49–74. In Porter, R., Fitzsimons, D.W. (eds.), Phosphorus in the environment: its chemistry and Biochemistry. Excerpta Medica, Amsterdam. McDowell, R.W., N. Mahieu, P.C. Brookes, and P.R. Poulton. 2003. Mechanisms of phosphorus solubilisation in a limed soil as a function of pH. Chemosphere 51(8): 685–692. McDowell, R., and A. Sharpley. 2003. Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma 112: 143–154. McSweeney, K., and S. Grunwald. 1998. Soil Morphology, Classification, and Mapping. WISCAvailable at http://www.soils.wisc.edu/courses/SS325/oxides.htm (verified 21 July 2012). Moore, P.B. 1966. The crystal structure of metastrengite and its relationship to strengite and phosphophyllite. Am. Miner. 51(1). Mott, C.J.B. 1970. Sorption of anions by soils. Soc. Chem. Ind. Monogr. 37(7): 40–52. Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36. Nanzyo, M. 1986. Infrared spectra of phosphate sorbed on iron hydroxide gel and the sorption products. Soil Sci. Plant Nutr. 32: 51–58. Neilands, J.B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50: 715–731. Neilands, J.B. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723 –26726. Neilands, J.B., K. Konopka, B. Schwyn, M. Coy, R.T. Francis, B.H. Paw, and A. Bagg. 1987. Comparative biochemistry of microbial iron assimilation. p. 3–33. In Winkelmann, G., Van der Helm, D., Neilands, J.B. (eds.), Iron transport in microbes, plants and animals. VCH, Weinheim. Neubauer, U., B. Nowack, G. Furrer, and R. Schulin. 2000. Heavy Metal Sorption on Clay Minerals Affected by the Siderophore Desferrioxamine B. Env. sci. technol. 34(13): 2749–2755. Nezat, C.A., J.D. Blum, R.D. Yanai, and B.B. Park. 2008. Mineral Sources of Calcium and Phosphorus in Soils of the Northeastern United States. Soil Sci. Soc. Am. J. 72(6): 1786–1794. Nowack, B., and A.T.A.T. Stone. 2006. Competitive adsorption of phosphate and phosphonates onto goethite. Water Res. 40(11): 2201–2209Available at http://www.ncbi.nlm.nih.gov/pubmed/16674984 (verified 6 April 2012). Ozanne, P.G. 1980. Phosphate nutrition of plants — general treatise. p. 559–589. In Khasawneh, F.E., Sample, E.C., Kamprath, E.J. (eds.), The role of phosphorus in agriculture. ASA-CSSA-SSSA, Madison, WI, USA. Parfitt, R.L., A.R. Fraser, J.D. Russell, and V.C. Farmer. 1977. Adsorption of hydrous oxides: II. Oxalate, benzoate and phosphate on gibbsite. J. Soil Sci. 28: 40—47. Pereira, J. a. M., M. Schwaab, E. Dell’Oro, J.C. Pinto, J.L.F. Monteiro, and C. a. Henriques. 2009. The kinetics of gibbsite dissolution in NaOH. Hydrometallurgy 96(1-2): 6–13. Perrin, D.D. 1979. Stability Constants of Metal-Ion Complexes, Part B; Organic Ligands. Pergamon, Oxford. Perrin, D.D., and B. Dempsey. 1974. Buffers for pH and Metal Ion Control. Chapman and Hall, London. Persson, P., N. Nilsson, and S. Sjoberg. 1995. Structure and bonding of orthophosphate ions at the iron oxide-Aqueous interface. J. Colloid Interf. Sci. 177(1): 263–275. Petticrew, E.L., and J.M. Arocena. 2001. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. Sci. Total Environ. 266(1-3): 87–93. Poole, K., and G.A. McKay. 2003. Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front. Biosci. 8: 661–686. Pou, T., 0. Murphy, V. Young, and J. Brockris. 1984. Pou, T. Murphy, 0. Young, V. Brockris, J. J. Electrochem. Soc. 131(6): 1243. Powell, R.G., D. Weisleder, C.R. Smith jr., J. Kozlowski, and W.K. Rohwedder. 1982. Treflorine, trenudine, and N-methyltrenudone: Novel maytansinoid tumor inhibitors containing two fused macrocyclic rings. J. Am. Chem. Soc. 104: 4929–4934. Prodromou, K., and A. Pavlatou-Ve. 1995. Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clays Clay Miner. 43(1): 111–115. Raghothama, K.G. 1999. Phosphate acquisition. Annu. Rev. Plant Physiol. Mol. Biol. 50: 665–693. Rahnemaie, R., T. Hiemstra, and W.H. van Riemsdijk. 2007a. Geometry, charge distribution, and surface speciation of phosphate on goethite. Langmuir 23(7): 3680–9. Rahnemaie, R., T. Hiemstra, and W.H. van Riemsdijk. 2007b. Carbonate adsorption on goethite in competition with phosphate. J. Colloid Interf. Sci. 315(2): 415–25. Ray, R.N., A. Finck, G.J. Blair, and H.L.S. Tandon. 2006. Plant nutrition for food security. FAO, Rome, Italy. Raymond, K.N., and E.A. Dertz. 2004. Biochemical and physical properties of siderophores. p. 3–17. In Cross, J.H., Mey, A.R., Payne, S.M. (eds.), Iron transport in bacteria. American Society of Microbiology Press, Washington DC. Reichard, P.U., R. Kretzschmar, and S.M. Kraemer. 2007a. Rate laws of steady-state and non-steady-state ligand- controlled dissolution of goethite. Colloids Surf. A 306(1-3): 22–28. Reichard, P., R. Kretzschmar, and S. Kraemer. 2007b. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim. Cosmochim. Acta 71(23): 5635–5650. Renshaw, J.C., G.D. Robson, A.P.J. Trinci, M.G. Wiebe, F.R. Livens, D. Collison, and R.J. Taylor. 2002. Fungal siderophores: structures, functions and applications. Mycol. Res. 106: 1123–1142. Rodrigues, L.A., and M.L.C.P. da Silva. 2009. An investigation of phosphate adsorption from aqueous solution onto hydrous niobium oxide prepared by co-precipitation method. Colloids Surf. A 334(1-3): 191–196. Ron Vaz, M.D., A.C. Edwards, C.A. Shand, and M.S. Cresser. 1993. Phosphorus fractions in soil solution: influence of soil acidity and fertilizer additions. Plant Soil 148(2): 175–183. Roncal-Herrero, T., and E.H. Oelkers. 2008. Variscite dissolution rates in aqueous solution: does variscite control the availability of phosphate in acidic natural waters? Mineral. Mag. 72(1): 349–351. Roncal-Herrero, T., and E.H. Oelkers. 2011. Does variscite control phosphate availability in acidic natural waters? An experimental study of variscite dissolution rates. Geochim. Cosmochim. Acta 75(2): 416–426. Rosenberg, D.R., and P.A. Maurice. 2003. Siderophore adsorption to and dissolution of kaolinite at pH 3 to 7 and 22°C. Geochim. Cosmochim. Acta 67(2): 223–229. Russel, J.D., R.L. Parfitt, A.R. Fraser, and V.C. Farmer. 1974. Surface structures of gibbsite, goethite and phosphated goethite. Nature 248: 220–221. Saldi, G.D., S.J. Kohler, N. Marty, and E.H. Oelkers. 2007. Dissolution rates of talc as a function of solution composition, pH and temperature. Geochim. Cosmochim. Acta 71(14): 3446–3457. Van Santen, R.A., and A. de Koster. 1991. Quantum Chemistry of CO Chemisorption and Activation. p. 1–33. In Guczi, L. (ed.), New Trends in CO Activation. Elsevier Science Publishers B.V., Amsterdam. Schachtschabel, P., H.P. Blume, G. Brummer, K.H. Hartge, and U. Schwertmann. 1989. Textbook of soil science (F Scheer and HG Schachtschabel, Eds.). 12th ed. Ferdinand Enke Verlag, Stuttgart, Germany. Schwertmann, U., and R. Cornell. 1991. Iron Oxides in the Laboratory. VCH Verlagsgeseilschaft, Weinheim. Schwertmann, U., and R.M. Taylor. 1989. Iron Oxides. p. 379–438. In Minerals in soil environment. Soil Science Society of America, Madison, WI, USA. Shen, J., L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, and F. Zhang. 2011. Phosphorus dynamics: from soil to plant. Plant physiol. 156(3): 997–1005. Siffert, C., and B. Sulzberger. 1991. Light-induced dissolution of hematite in the presence of oxalate: a case study. Langmuir, 7: 1627–163. Sigg, L., and W. Stumm. 1981. The interaction of anions and weak acids with the hydrous goethite (a-FeOOH) surface. Colloids Surf. 2(2): 101–117. Simanova, A. 2011. Molecular Perspectives on Goethite Dissolution in the Presence of Oxalate and Desferrioxamine-B. Ph.D. Dissertation: 1–46. Simanova, A.A., P. Persson, and J.S. Loring. 2010. Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B. Geochim. Cosmochim. Acta 74(23): 6706–6720. Smith, V.H. 2003. Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ. Sci .Pollut. Res. Int. 10(2): 126–139. Smith, S.E., and D.J. Read. 2008. Mycorrhizal Symbiosis. 3rd ed. Academic Press, New York. Snoeyink, V.L., and D. Jenkins. 1980. Water Chemistry. Wiley, New York. Sposito, G. 1989. The chemistry of soils. Oxford University Press, Oxford, New York. Sposito, G. 2004. The Surface Chemistry of Natural Particles. Oxford University Press, Inc., New York. Stepniewska, Z., K. Bucior, and R.P. Bennicelli. 2004. The effects of MnO2 on sorption and oxidation of Cr(III) by soils. Geoderma 122: 291–296. Strauss, R., G.W. Brummer, and N.J. Barrow. 1997. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. Eur. J. Soil Sci. 48(1): 101–114. Stumm, W. 1992. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. J. Wiley & Sons., New Jersey. Stumm, W. 1997. Reactivity at the mineral–water interface: Dissolution and inhibition. Colloids Surf. A 120(1-3): 143–166. Stumm, W., and B. Sulzberger. 1992. The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes. Geochim. Cosmochim. Acta 56: 3233–3257. Stumm, W., B. Wehrli, and E. Wieland. 1987. Surface complexation and its impact on geochemical kinetics. Croat. Chem. Acta 50: 1861–1869. Stumm, W., and R. Wollast. 1990. COORDINATION CHEMISTRY OF WEATHERING: Kinetics of the Surface-Controlled Dissolutidn of Oxide Minerals. Rev. Geophys. 28(1): 53–69. Sun, X., and H.E. Doner. 1996. An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil sci. 161: 865–872. Syers, K., M. Bekunda, and D. Cordell. 2011. Phosphorus and food production. p. 34–45. In Goverse, T., Bech, S. (eds.), UNEP Year Book 2011. Nairobi. Syers, J.K., A.E. Johnston, and D.C. Curtin. 2008. Efficiency of Soil and Fertilizer Phosphorus Use. FAO Fertilizer and Plant Nutrition. Taxer, K., and H. Bartl. 2004. On the dimorphy between the variscite and clinovariscite group: refined finestructural relationship of strengite and clinostrengite, Fe(PO4) . 2H2O. Cryst. Res. Technol. 39(12): 1080–1088. Tejedor-Tejedor, M.I., and M.A. Anderson. 1986. “In situ” attenuated total reflection Fourier transform infrared studies of the goethite (α-FeOOH)-aqueous solution interface. Langmuir 2: 203–210. Tejedor-Tejedor, M.I., and M.A. Anderson. 1990. Protonation of phosphate on the surface of goethite as studien_US
dc.identifier.urihttp://hdl.handle.net/11455/25649-
dc.description.abstract植物從土壤中攝取養分受到植物根系與土壤之物理、生物化學性質交互作用的複雜過程影響。單子葉禾本科植物的根分泌可鉗合三價鐵且對鐵親和力高的載鐵物質 (phytosiderophores, PSs) 來溶解土壤中的鐵,進而影響磷等其他營養元素在土壤中的移動。本研究目的為:探討載鐵物質之一的去鐵胺 (desferrioxamine-B, DFO-B) 與含鐵、鋁或磷礦物 (紅磷鐵礦 (strengite, FePO4∙2H2O) 、磷酸鋁石 (variscite, AlPO4∙2H2O)) 與已吸附磷的針鐵礦 (goethite, α-FeOOH)、水鋁礦 (gibbsite, α-Al(OH)3)、赤鐵礦 (hematite, α-Fe2O3) 交互作用下礦物表面溶出的情形,進而來瞭解載鐵物質在植物吸收磷可能扮演的角色。實驗結果顯示:擬一級速率方程式適合用於說明DFO-B促進含鐵、鋁或磷礦物的溶解情形,其中溶解的速率常數與DFO-B被吸附的量有相關性。在 pH 4 下,DFO-B隨著針鐵礦、水鋁礦與赤鐵礦表面所吸附磷含量的增加而加速礦物的溶解速率。然而,在 pH 9下,礦物表面磷吸附量的增加卻抑制礦物表面的溶出,可能是因 pH 9 環境下,磷酸根在礦物表面形成了較穩定的結構,使DFO-B不易溶解礦物表面。根據 Arrhenius 方程式,在不同溫度與 pH 下,DFO-B與不同礦物反應之活化能 (activation energies, Ea) 也顯示:在 pH 9 下的反應之活化能高於 pH 4 下的活化能,表示磷酸根與礦物表面在 pH 9 下形成了DFO-B難以鉗合的形式,進而抑制了礦物表面的溶解。針對含鐵磷或鋁磷的礦物研究發現:DFO-B的存在促進紅磷鐵礦與磷酸鋁石溶解的現象。其中,因為磷酸鋁石表面吸附較多的DFO-B,造成磷酸鋁石溶解速率較紅磷鐵礦溶解速率快。zh_TW
dc.description.abstractNutrient uptake of plants from soil is a complex process determined by the interactions of the plant roots with the soil and the combination of physical and biochemical properties of the soil. The roots of graminaceous monocots secrete phytosiderophores (PSs), which are chelating agents with a high affinity for Fe(III), to dissolve Fe(III) in soil. The release of PSs can potentially mobilize nutrients, such as P, associated with Fe in soil. To understand the potential role of PSs in regulating the P acquisition of plants, this study investigated the interactions of desferrioxamine-B (DFO-B) siderophore with some major Fe, Al and P - containing minerals, including strengite (FePO4∙2H2O), variscite (AlPO4∙2H2O), and phosphate-loaded goethite (α-FeOOH), gibbsite (α-Al(OH)3) and hematite (α-Fe2O3). The pseudo-first-order rate constant was determined for the DFO-B – promoted dissolution of each mineral and subsequently normalized to the corresponding amount of adsorbed siderophore to calculate the mass-normalized dissolution rate. Apparent activation energies (Ea) were calculated from the mass-normalized dissolution rates of each mineral obtained at different temperatures using the Arrhenius equation. Increasing the loading of adsorbed P on all three oxides (i.e., goethite, hematite and gibbsite) resulted in an increase in the dissolution rates of the minerals but a decrease in dissolution rates at pH 9. The rate inhibition at pH 9 is attributed to the presence of binuclear surface complexes, in which much more energy is required to remove simultaneously two center atoms from the crystalline lattice than it is to remove solely one center (i.e. in the case of mononuclear complexes at pH 4). Higher Ea values at pH 9 than at pH 4, supports our hypothesis that the existence of stronger adsorbed phosphate complexes hinder the smooth release of the metal-ion-center. DFO-B -promoted dissolution of strengite and variscite studies show that dissolution was enhanced in the presence of DFO-B. Higher dissolution rates for variscite than strengite is attributed to the higher adsorbed concentrations of DFO-B on variscite than on strengite.en_US
dc.description.tableofcontents摘要 i ABSTRACT ii ACKNOWLEDGMENTS iv TABLE OF CONTENTS vi LIST OF TABLES ix LIST OF FIGURES xiii 1. INTRODUCTION 1 1.1 Background 1 1.2 Objectives 5 2. LITERATURE REVIEW 7 2.1 Metal Oxides in Soil 7 2.2 The Structures of the Applied Minerals 9 2.2.1 Goethite 9 2.2.2 Hematite 10 2.2.3 Gibbsite 12 2.2.4 Strengite and Variscite 13 2.3 Phosphate 14 2.3.1 Uncomplexed Phosphate in Aqueous Solution 15 2.3.2 Adsorption of Phosphate on Metal Oxides 16 2.3.3 pH Dependency 18 2.4 Siderophores 19 2.4.1 Chemistry of Siderophores 23 2.5 Mineral Dissolution 26 2.5.1 Rate Laws 27 2.5.2 Temperature Dependence 28 3. MATERIALS AND METHODS 31 3.1 Chemicals 31 3.2 Mineral phases Synthesis/ Mineralogical Samples synthesis 31 3.2.1 Goethite (α-FeOOH) 31 3.2.2 Hematite (α–Fe2O3) 32 3.2.3 Variscite (AlPO4 ‧ 2H2O) 32 3.2.4 Strengite (FePO4‧2H2O) 33 3.2.5 Gibbsite [γ-Al (OH)3] 33 3.3 X-ray Diffraction Analyses 34 3.4 Adsorption Experiments 34 3.4.1 Maximum Phosphorus Adsorption Capacities of Minerals 34 3.4.2 Adsorption of DFO-B on Mineral Surfaces 38 3.5 Steady-State Ligand-promoted Dissolution of Minerals in the Presence of DFO-B 38 3.6 Analysis Methods 39 4. RESULTS 41 4.1 Mineral Characterization 41 4.2 Adsorption of Phosphates on Oxides 43 4.3 Dissolution Kinetics 46 4.4 Dissolution of Strengite and Variscite 60 4.5 Phosphate Desorption Kinetics 66 4.6 Effect of Adsorbed Phosphate on Dissolution 72 4.7 Temperature Effect 74 4.8 Temperature dependence of DFO-B - promoted dissolution of strengite and variscite. 88 5. DISCUSSION 90 5.1 Phosphate Adsorption 90 5.2 DFO-B Adsorption and –promoted Dissolution 91 5.3 pH-Dependence and the Influence of Phosphate 92 5.4 Dissolution of Strengite and Variscite. 98 5.5 Temperature Dependence of Dissolution 99 6. CONCLUSIONS 108 REFERENCES 109 APPENDIX 132zh_TW
dc.language.isoen_USen_US
dc.publisher土壤環境科學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2901201313215200en_US
dc.subject去鐵胺zh_TW
dc.subjectDesferrioxamine-B (DFO-B)en_US
dc.subject載鐵物質zh_TW
dc.subject磷酸根zh_TW
dc.subject針鐵礦zh_TW
dc.subject水鋁礦zh_TW
dc.subject赤鐵礦zh_TW
dc.subject配位基促進溶解現象zh_TW
dc.subject吸附zh_TW
dc.subject活化能zh_TW
dc.subjectsiderophoreen_US
dc.subjectphosphateen_US
dc.subjectgoethiteen_US
dc.subjectgibbsiteen_US
dc.subjecthematiteen_US
dc.subjectligand-promoted dissolutionen_US
dc.subjectadsorptionen_US
dc.subjectactivation energyen_US
dc.title載鐵物質 (DESFERRIOXAMINE-B) 與含磷鐵鋁礦物之間的化學反應機制zh_TW
dc.titleREACTION MECHANISM OF DESFERRIOXAMINE-B WITH Al AND Fe MINERALS CONTAINING PHOSPHORUSen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:土壤環境科學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.