Please use this identifier to cite or link to this item:
標題: 金屬Zn(II), Cu(II)及Al(III)對於鐵氧化物吸附四環類抗生素的影響
Influences of Zn(II), Cu(II) and Al(III) on tetracycline antibiotics adsorption by iron hydroxide
作者: 黃美霞
Huang, Mei-Hsia
關鍵字: 四環素;Tetracycline;抗生素;鐵氧化物;水合鐵礦;針鐵礦;antibiotic;ferrihydrite;goethite
出版社: 土壤環境科學系所
引用: 王明光。2000。土壤環境礦物學,藝軒圖書出版社。 宋華聰。2004。抗藥性菌的產生與防範,行政院農委會農政與農情, 144(381):49-52。 林俊臣。2005。飼料添加物使用準則簡介,行政院農委會農政與農情, 156:151-162。 林素霞。2005。酸化土在染整廢液之應用。南亞技術學院化工系,教專研成果報告, 教專研94P-007。 徐聖惠。2010。探討浸水環境下添加黑炭對於汙染土壤重金屬移動性之影響。 國立中興大學土壤環境科學系碩士論文。 陳信安。2012。利用二氧化鈦光催化降解水中四環素之研究。國立中興大學土壤 環境科學系碩士論文。 陳瑛瑛、陳嫣紅、王復德。2006。抗藥性微生物院內感染之防治策略.臨床醫學, 57(2):127–133。 張家銘、陳立佳、柯文謙。2001。乙內醯胺類抗生素及其抗藥性,內科學誌 (Journal of Internal Medicine of Taiwan),10(5): 185-97。 張進祥。2009。纖鐵礦及水合鐵礦吸附水中磷酸鹽之研究。嘉南藥理科技大學碩 士論文。 鄭仲凱。氫氧化鐵吸附水中砷之動力與平衡研究。國立成功大學環境工程學系碩士論文。 劉朝鑫、陳啟銘、張聰洲、張文發、張紹光、郭忠政、林志勳、朱純燕。2008。 行政院農業委員會動植物防疫檢疫局財團法人台灣動物科技研究所豬隻常 用動物用藥品使用手冊。 盧柏樑。2004。抗生素與抗藥。 賴進興。1995)。氧化鐵覆膜濾砂吸附過濾水中銅離子之研究。國立台灣大學博士 論文。 Aga, D. S., S. O’Connor, S. Ensley, J. O. Payero, D. Snow, and D. Tarkalson. 2005. Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J. Agric. Food Chem. 53:7165-7171. Alloway, B. J. 1995. Heavy metal in soil, 2nd ed. Blackie Academic and Professional, Glasgow, UK. Alloway, B. J., A. P. Jackson, and H. Morgan. 1990. The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Science of the Total Environment 91:223-236. Arikan O.A., L. J. Sikora, and W. Mulbry. 2006. The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves. Process biochemistry 41:1637-1643. Batt, A. L., and D. S. Aga. 2005. Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Anal. Chem. 77:2940-2947. Blackwell, P. A., P. Kay, R. Ashauer, and A. B. A. Boxall. 2009. Effects of agricultural conditions on the leaching behavior of veterinary antibiotics in soils. Chemosphere 75:13-19. Carrasquillo, A. J., G. L. Bruland, A. A. Mackay, and D. Vasudevan. 2008. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environ. Sci. Technol. 42:7634-7642. Cambier, P. 1986. Infrared study of goethites of varying crystallinity and particle size: I. Interpretation of OH and lattice vibration frequencies. Clay Miner. 21:191-200. Campagnolo, E.R., K. R. Johnson, A. Karpati, C. S. Rubin, D. W. Kolpin, M. T. Meyer, J. E. Esteban, R. W. Currier, K. Smith, K. M. Thu, M. McGeehin. 2002. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci. Total Environ. 299: 89-95. Chang, P. H., J. S. Jean, W. T. Jiang, and Z. Li. 2009. Mechanism of tetracycline sorption on rectorite. Colloids Surf., A 339:94-99. Chang, P. H., Z. Li, J. S. Jean, W. T. Jiang, C. J. Wang, and K. H. Lin. 2011. Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl. Clay Sci. doi: 10.1016/j.clay.2011.11.004. Chen, W. R., and C. H. Huang. 2009. Transformation of tetracyclines mediated by Mn(II) and Cu(II) ions in the presence of oxygen. Environ Sci. Technol. 43:401-407. Chen, W. R., and C. H. Huang. 2011. Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide. Environ. Pollut. 159:1092-1100. Chen, Y., C. Hu, J. H. Qu, and M. Yang. 2008. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. J. Photochem. Photobiol. A 197:81-87. Chopra, I., and M. Roberts. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232-260. Christian, T., R. J. Schneider, H. A.Farber, D. Skutlarek, M. T. Meyer, and H. E. Goldbach. 2003. Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydroch. Hydrob. 31:36-44. Cornell, R. M., and U. Schwertmann. 1996. The iron oxides. Weinheim, New York. Dolliver, H., S. Gupta. 2008. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land. J. Environ. Qual. 37:1227-1237. Fernández, C., C. Alonso, M. M. Babín, J. Pro, G. Carbonell, and J. V. Tarazona. 2004. Exotoxicological assessment of doxycycline in aged pig manure using multispecies soil systems. Sci. Total Environ. 323:63-39. Figueroa, R. A., A. Leonard, A. A. Mackay. 2004. Modeling tetracycline antibiotic sorption to clays. Environ Sci. Technol. 38:476-483. Figueroa, R. A., and A. A. Mackay. 2005. Sorption of oxytetracycline to iron oxide and iron oxide-rich soils. Environ Sci. Technol. 39:6664-6671. Gu, C., and K. G. Karthikeyan. 2005. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol. 39:2260-2667. Gu, C., K. G. Karthikeyan, S. D. Sibley, and J. A. Pedersen. 2007. Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66:1494-1501. Hamscher, G., S. Sczesny, H. Hoper, and H. Nau. 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem. 74:1509-1518. Hamscher G., S. Limsuwan, N. Tansakul, and M. Kietzmann. 2006. Quantitative analysis of tylosin in eggs by high performance liquid chromatography with electrospray ionization tandem mass spectrometry: Residue depletion kinetics after administration via feed and drinking water in laying hens. J. Agric. Food. Chem. 54:9017-9023. Homem, V., L. Santos. 2011. Degradation and removal methods of antibiotics from aqueous matrices - A review. J. Environ. Manage. 92:2304-2347. Jacobsen A. M., B. Halling-Sorensen, and F. Ingerslev. 2004. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1038:157-170. Jia, Y. F., L. Y. Xu, Z. Fang, and G. P. Demopoulos. 2006. Observation of surface precipitation of arsenate on ferrihydrite. J. Environ. Sci. Technol. 40:3248-3253. Jia, D. A., D. M. Zhou, Y. J. Wang, H. W. Zhu, and J. L. Chen. 2008. Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma 146:224-230. Jiemba, P.K.J., 2002. The potential impact of veterinary and human therapeutic agents in manure and biosoilds on plants grown on arable land: a review, Agriculture, Ecosystems and Environment 93 267-278. Kang, J., H. Liu, Y. M. Zheng, J. Qu, and J. P. Chen. 2010. Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. J. Colloid Interface Sci. 334:117-125. Kay, P., P. A. Blackwell, and A. B. A. Boxall. Transport of veterinary antibiotics in overland flow flowing the application of slurry to arable land. Chemosphere 60:615-622. Khan, M. A., J. Mustafa, and J. Musarrat. 2003. Mechanism of DNA strand breakage induced by photosensitized tetracycline-Cu(II) complex. Mutation Research 525:109-119. Kolpin, D.W., E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H.T. Buxton. 2002. Response to Comment on,"Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance". Environ. Sci. Technol. 36:4007-4008. Kong, W., C. Li, J. M. Dolhi, S. Li, J. He, and M. Qiao. 2012. Characteristics of oxytetracycline sorption and potential biovailability in soils with various physical-chemical properties. Chemophere 87:542-548. Kong, W.D., Y.G. Zhu, B. J. Fu, P. Marschner, and J. Z. He. 2006. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ. Pollut. 143:129-137. Li, Z. H., L. Shulz, C. Ackley, and N. Fenske. 2010. Adsorption of tetracycline on kaolinitewith pH-dependent surface charge. J. Colloid Interface Sci. 351:254-260. Liang, Y., M. B. Denton, and R. B. Rates. 1998. Stability studies of tetracycline in methanol solution. J. Chromatogr. A 827:45-55. Lin, A. Y. C., T. H. Yu, and C. F. Lin. 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemophere 74:131-141. Lindsey, M. E., M. Meyer, and E. M. Thurman. 2001. Analysis of trace levels of sulfonamide and tetracycline antimicrobials, in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem. 73:4640-4646. Liu, H., Y. Yang, J. Kang, M. Fan, and J. Qu. 2012. Removal of tetracycline from water by Fe-Mn binary oxide. J. Environ. Sci. 24:242-247. Luo, Y., L. Xu, M. Rysz, Y. Wang, H. Zhang, and P. J. J. Alvarez. 2011. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 45:1827-1833. Machado, F. C., C. Demicheli, A.Garnier-Suillerot, and H. Beraldo. 1995. Metal complexes of anhydrotetracycline. 2. Adsorption and circular dichroism study of Mg(II), Al(III), and Fe(III) complexes. Possible influence of the Mg(II) complex on the toxic side effects of tetracycline. J. Inorg. Biochem. 60:163-173. Miao, X. S., F. Bishay, M. Chen, and C. D. Metcalfe. 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ. Sci. Technol. 38:3533-3541. Mishra, P., B. K. Singh, S. Dhingra, and R. K. Sharma. 2007. Spectroscopic characterization of complexes of tetracycline with cobalt(II), nickel(II), cdmium(II) and inorganic Sn(II). Main Group Chem. 6:109-119. Mitscher, L.A., 1978. The Chemistry of the Tetracycline Antibiotics, Medicinal Research Series 9. Marcel Dekker, New York. Olu-Owolabi, B. I., and E. I. Unuabonah. 2011. Adsorption of Zn2+ and Cu2+ onto sulphate and phosphate-modified bentonite. Appl. Clay Sci. 51:170-173. Parolo, M. E., M. J. Avena, G.R. Pettinari, and M. T. Baschini. 2012. Influence of Ca2+ on tetracycline adsorption on montmorillonite. J. Colloid Interface Sci. 368:420-426. Pils, J. R., and D. A. Laird. 2007. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ. Sci. Technol. 41:1928-1933. Prélot, B., F. Villiéras, M. Pelletier, G. Gérard, F. Gaboriaud, J. J. Ehrhadt, J. Perrone, M. Fedoroff, J. Jeanjean, G. Lefèvre, L. Mazerolles, L. L. Pastol, J. C. Rouchaud, and C. Lindecker. J. Colloid Interface Sci. 261:244-254. Quinlan, G. J., and J. M. C. Gutteridge. 1991. DNA base damage by betalactam, tetracycline, bacitracin and rifamycin antibacterial amtibiotics. Biochem. Pharmacol. 42:1595-1599. Roberts, M. C. 1996.Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19:1-24. Salyers, A. A., and D. D. Whitt. 2002. How Bacteria Become Resistant to Antibiotics. pp. 168-184. In Bacterial pathogenesis: a molecular approach, 2nd ed. American Society for Microbiology Press, Washington, DC. Sarmah, A.K., M. T. Meyer, and A. B. A. Boxall. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725-759. Sassman, S. A., L. S. Lee. 2005. Sorption of three tetracycline by several soils: Assessing the role of pH and cation exchange. Environ. Sci. Technol. 39:7452-7459. Sheals, J., M. Granström, S. Sjöberg, and P. Persson. 2003. Cosorption of Cu(II) and glyphosate at the water-goeethite (α-FeOOH) interface: molecular structures from FTIR and EXAFS measurements. J. Colloid Interface Sci. 262:38-47. Singer, B. D. Grunberger. 1983. Molecular biology of mutagens and carcinogens. Plenum Press, New York. Souza, S. M. L., E. C. Vasconcelos, M. Dziedzic, and C. M. R. Oliveira. 2009. Environmental risk assessment of antibiotics: An intensive care unit analysis. Chemosphere 77:962-967. Stevenson, F. J., Humus chemistry, John Wiley & Sons, New York, 1994. Tanis, E., K. Hanna, and E. Emmanuel. 2008. Experimental and modeling studies of sorption of tetracycline onto iron oxides-coated quartz. Colloids Surf., A 327:57-63. Tong, L., P. Li, Y. X. Wang, and K. Z. Zhu. 2009. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimizes SPE-LC/MS/MS. Chemosphere 74:1090-1097. Turku, I., T. Sainio, and E. Paatero. 2007. Thermodynamics of tetracycline adsorption on silica. Environmental Chemistry Letters 5:225-228. Waller, C. W., B. L. Hutchings, C. F. Wolf, A. A. Goldman, R. W. Broschard, and J. H. Williams. 1952. Degradation of aureomycin. VI. Isoaureomycin and aureomycin. J. Am. Chem. 34:3083-3086. Walton, V. C., M. R. Howlett, and G. B. Selzer. 1970. Anhydrotetracycline and 4-epianhydrotetracycline in market tetracyclines and aged tetracycline products. Journal of Pharmaceutical Sciences 59:1160-1164. Wan, Y., Y. Bao, and Q. Zhou. 2010. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere 80:807-812. Wang, J., J. Hu, and S. Zhang. 2010. Studies on the sorption of tetracycline onto clays and marine sediment from seawater. J. Colloid Interface Sci. 349:578-582. Wang, Y. J., D. A. Jia, R. J. Sun, H. W. Zhu, and D. M. Zhou. 2008. Adsorption and cosorption of tetracycline and copper(II) on Montmorillonite as affected by solution pH. Environ. Sci. Technol. 42:3254-3259. Wessels, J. M., W. E. Ford, W. Szymczak, and S. Schneider. 1998. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: A spectroscopic study. J. Phys. Chem. B 102:9323-9331. Winckler, C., J. Capdeville, G. Gebresenbet, B. Horning, U. Roiha, M. Tosi, and S. Waiblinger. 2003. Selection of parameters for on-farm welfare-assessment protocols in cattle and buffalo. Anim. Welf. 12:619-624. Witte, W. 2000. Ecological impact of antibiotic use in animals on different complex microflora: environment. Int. J. Antimicrob. Agents 14:321-325. Xu, X. R., and X. Y. Li. 2010. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemophere 78:430-436. Zhang, Y., C. F. Marrs, C. Simon, and C. Xi. 2009. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci. Total Environ. 407:3702-3706. Zhao, L., Y. H. Dong, H. Wang. 2010. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 408:1069-1075. Zhao, Y., J. Geng, X. Wang, X. Gu, and S. Gao. 2011. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances. J. Colloid Interface Sci. 361:247-251. Zhu, J., D. D. Snow, D. A. Cassada, S. J. Monson, and R. F. Spalding. 2001. Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 928:177-186.
四環類抗生素(TC)為世界上廣泛使用之抗生素,其被使用於預防人類疾病、獸醫用藥及當作動物的生長促進劑使用。但由於極少量的TCs可經由新陳代謝被動物的腸胃道所吸收,而大部分的TC會以原結構經由動物的尿液以及排泄物排至動物體外。當TC被釋放到環境中,土壤中常見的礦物如鐵氧化物對TC的吸附行為便為一個控制環境中TC的移動性及生物有效性的重要角色。由於TC可與雙價及三價金屬離子產生很強的錯合能力,此錯合反應會改變TC的帶電特性而影響TC與吸附劑表面之交互作用,進而改變其在環境中的傳輸。在本研究中,TC在鐵氧化物例如水合鐵礦及針鐵礦上的吸附反應,會受溶液pH值及不同的金屬錯合比例所影響,水合鐵礦及針鐵礦皆在pH 6時有最大的TC吸附量,當溶液中出現金屬離子(Zn2+、Cu2+及Al3+)時,金屬離子會經由同時與鐵氧化物及TC產生錯合而形成鐵氧化物及TC間的陽離子橋接,即其會與鐵氧化物和TC產生三元複合體而增進TC在鐵氧化物表面的吸附量。金屬離子與TC間不同的錯合比例亦會影響TC與鐵氧化物間的交互作用,TC-Zn及TC-Al在莫耳比為1:1而TC-Cu在莫耳比為1:3時會有最大的TC吸附量。此外,經金屬修飾過後的鐵氧化物表面,其對於TC的吸附能力沒有TC-金屬錯合物的吸附能力強。

Tetracyclines(TCs) is one of the most widely-used antibiotics in the world, which are commonly used as human infection medicines, veterinary medicines, and animal growth promoters. Because only small amount of TCs are absorbed during metabolism, the majority of TC are excreted via feces and urine as unchanged form. Upon TC release, iron oxide-hydroxides (IOH), common minerals in soils, may play an important role in controlling the behavior and bioavailability of TC in the environment. However, the interactions of TC with IOH may be subject to change while TC forming a strong complex with divalent or trivalent cations. In this report, TC adsorptions on iron oxide-hydroxides, such as goethite and ferrihydride, as influenced by pH and metal cations with various molar ratios, were examined. Results indicated that TC adsorption on ferrihydrite and goethite exhibited relatively fast, and it reached the maximum at pH 6. The presence of metals (Zn2+、Cu2+ and Al3+) would increase TC adsorption on the minerals, attributing probably to the formations of metal bridge and ternary complexes. TC and metal ratios influenced strongly the interactions of TC with the iron minerals. A maximum adsorption of TC was observed for TC-Zn/TC-Al and TC-Cu with a TC-metal ratio of 1:1 and 1:3, respectively. However, an increase of metal concentrations behind the specific ratio would lead to a decrease of TC adsorption Modifications of mineral surfaces by extra metal ions may create an unfavorable local environment for TC or TC-metal complexes adsorptions.
其他識別: U0005-2307201215120700
Appears in Collections:土壤環境科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.