Please use this identifier to cite or link to this item:
標題: 鐵或錳氧化物於共存系統中對黑炭和六價鉻反應之影響
Reactions of hexavalent chromium with black carbon when co-existing with iron or manganese hydrous oxides
作者: 張雅菁
Chang, Ya- Jing
關鍵字: 六價鉻;Chromium(VI);黑炭;氧化物;Black carbon;Oxide
出版社: 土壤環境科學系所
引用: 陳仁炫。1990。肥料增進的原則與對策(三) 磷肥。農藥世界。84: 58-64。 楊登旭。1996。層狀錳氧化物的結構特性及其在土壤錳氧化物上之應用,博士論文,台灣大學,台北。 王明光。2000。土壤環境礦物學。藝軒圖書出版社。 陳瑤瓊。2008。不同因子影響具鐵錳影響之土壤對Cr(III)的氧化反應,碩士論文,台灣大學,台北。 行政院環境保護署。2011。土壤污染管制標準。環署土字第1000008495號。 行政院環境保護署。2011。地下水污染管制標準。環署土字第1000010141號。 蘇春田, 唐健生, 鄒勝章. 等. 2011. 錳元素在鐵錳結核土壤旱地作物的分布研究. 熱帶地理. 31: 262-265. Amacher, M. C. and D. E. Baker. 1982. Redox reactions involving chromium, plutonium and manganese in soils. DOE/DP/04515-1, Institute for Research on Land and Water Resources, Pennsylvania State University and U.S. Department of Energy, Las Vegas, NV, p.166. Anderson, L. D., D. B. Kent, and J. A. Davis. 1994. Batch experiments characterizing the reduction of Cr(VI) using suboxic material from a mildly reducing sand and graver aquifer: Environ. Sci. Technol. 28: 178-185. Ball, J. W. and D. K. Nordstrom. 1998. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J. Chem. Eng. 43: 895-918. Banerjee, D. and H. W. Nesbitt. 1999. Oxidation of aqueous Cr(III) at birnessite surfaces: constraints on reaction mechanism. Geochim. Cosmochim. Acta 63: 1671-1687. Barceloux, D. G. 1999. Chromium. Clin. Toxicol. 37: 173-194. Bartlett, R. J. and B. R. James. 1988. Mobility and bioavailability of chromium in soils. p.267-304. In J.O. Nriagu, and E. Nieboer (ed.) Chromium in the netural and human environments. John Wiley & Sons, New York. Bartlett, R. J. and B. R. James. 1996. Methods of soil analysis. 3rd ed. SSSA, Madison, WI. Bartlett, R. J. and J. M. Kimble. 1976. Behavior of chromium in soils: II. Hexavalent forms. J. Environ. Qual. 5: 383-386. Blowes, D. N., C. J. Ptacek, and J. L. Jambor. 1997. In-situ remediation of chromate contaminated groundwater using permeable reactive walls. Environ. Sci. Technol. 31: 3348 – 3357. Boehm, H. P. 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40: 145-149. Bojic, A. L., M. Purenovic, and D. Bojic. 2004. Removal of chromium (VI) from water by micro-alloyed aluminium composite (MAlC) under flow conditions. Water SA 30: 353-360. Buerge, I. J. and S. J. Hug. 1997. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ. Sci. Technol. 31: 1426–1432. Buerge, I. J. and S. J. Hug. 1998. Influence of organic ligands on chromium (VI) reduction by iron (II). Environ. Sci. Technol. 32: 2092 – 2099. Cao, Z. H., J. L. Ding, Z. Y. Hu, H. Knicker, I. Kogel-Knabner, L. Z. Yang, R. Yin, X. G. Lin, and Y. H. Dong. 2006. Ancient paddy soils from the Neolithic age in China’s Yangtze River Delta. Chin. Acad. Sci. 93: 232-236. Cary, E. E., W. H. Allaway, and O. E. Olson. 1977. Control of chromium concentrations in food plants. I. Absorption and translocation of chromium by plants. J. Agric. Food Chem. 25: 300–304. Cary, E. E., W. H. Allaway, and O. E. Olson. 1977. Control of chromium concentration in food plants, II. Chemistry of chromium in soils and its availability to plants. J. Agric. Food Chem. 25: 305–309. Chanda, M., and G. L. Rempel. 1993. Selective chromate recovery with quaternized poly (4-vinylpyridine). React. Polym. 21: 77-88. Chen, S. Y., S. W. Huang, P. N. Chiang, J. C. Liu, W. H. Kuan, J. H. Huang, J. T. Hung, Y. M. Tzou, C. C. Chen, and M. K. Wang. 2011. Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction. J. Hazard. Mater. 197: 337-344. Cornell R. M., and U. Schwertmann. 1996. The iron oxides. VCH, Weinheim, p.573. Dai, R., J. Liu, C. Yu, R. Sun, Y. Lan, and J.D. Maob. 2009. A comparativestudy of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere 76: 536–541. Deng, B. and A. T. Stone. 1996. Surface-catalyzed chromium(VI) reduction: The TiO2-CrVI-mandelic acid system. Environ. Sci. Technol. 30: 463–472. Deng, B. and A. T. Stone. 1996. Surface-catalyzed chromium(VI) reduction: Reactivity comparisons of different organic reductants and different oxide surfaces. Environ. Sci. Technol. 30: 2484–2494. D. Apte, A., V. Tare, and P. Bose. 2006. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. J. Hazard. Mater. 128: 164-174. Di Natale, F., A. Lancia, A. Molino, and D. Musmarra. 2007. Removal of chromium ions from aqueous solutions by adsorption on activated carbon and char. J. Hazard. Mater. 145: 381–390. Eary, L. E. and D. Rai. 1987. Kinetics of chromium (III) oxidation to chromium(VI) by reaction with manganese dioxide. Environ. Sci. Technol. 21: 1187–1193. Eary, L. E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22: 972-977. Eckert, J. M., J. J. Stewart, T. D. Waite, R. Szymezek, and K. L. Williams. 1990. The reduction of chromium(VI) at sub-μgL−1 levels by fulvic acid. Anal. Chim. Acta. 236: 357–362. Eiovitz, M. S. and W. Fish. 1994. Redox interactions of Cr(VI) and substituted phenols: kinetic investigation. Environ. Sci. Technol. 28: 2161-2169. Espenson, J. H. 1970. Oxidation of transition metal complexes by chromium(VI). Acc. Chem. Res. 3: 347-353. Fandeur, D., F. Juillot, G. Morin, L. Olivi, A. Cognigni, S. M. Webb, J. P. Ambrosi, E. Fritsch, F. Guyot, and G. E. Brown, JR. 2009. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environ. Sci. Technol. 43: 7384-7390. Fendorf, S. E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67: 55-71. Fendorf, S. E., M. J. Eick, P. R. Grossl, and D. L. Sparks. 1997. Arsenate and chromate retention mechanisms on goethite. 1. Surface Structure. J. Am. Chem. Soc. 31: 315-320. Fendorf, S. E. and R. J. Zasoski. 1992. Chromium(III) oxidation by δ-MnO2. Environ. Sci. Technol. 26: 79-85. Feng, X. H., L. M. Zhai, W. F. Tan, W. Zhao, F. Liu, and J. Z. He. 2006. The controlling effect of pH on oxidation of Cr(III) by manganese oxide minerals. J. Colloid Interface Sci. 298: 258-266. Florence, T. M. 1982. The speciation of trace elements in waters. Talanta 29: 345-64. Frederick, N. R. 1975. Hxavalent chromium in the ground water in Paradise. Valley, Arizona, Ground Water. 13: 516-527. Gad, S. C. 1989. Acute and chronic systemic chromium toxicity. Sci Total Environ. 86: 149-157. Gonzalez, A. R., K. Ndung''u, and A. R. Flegal. 2005. Natural occurrence of hexavalent chromium in the aromas red sands aquifer, California. Environ. Sci. Technol. 39: 5505-5511. Grossl, P. R., M. J. Eick, D. L. Sparks, S. Goldberg, and C. C. Ainsworth. 1997. Arsenate and chromate retention mechanisms on goethite. 2. kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31: 321-326. Handa B. K. 1988. Occurance and distribution of chromium in natural waters of India. In: Nriagu J.O. & Nieboer E. Chromium in Natural and Human Environments. New York: Wiley Interscience: 189-215. Hassmanova, V., J. Vaneckova, and K. Bousova. 2000. Occupational diseases caused by chromium and its compounds. Acta. Med. 43: 33-36. Healy, T. W., A. P. Herring, and D. W. Fuerstenau. 1966. Effect of crystal structure on the surface properties of a series of manganese dioxides. J. Colloid Interface Sci. 21: 435-444. Hiemstra, T. and W. H. Van Riemsdijk. 1996. A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid Interface Sci. 179: 488-508. Hingston, F. J., R. J. Atkinson, A. M. Posner and J. P. Quirk. 1968. Specific adsorption of anion on goethite. 9th Int. Cong. Soil Sci. Trans. 1: 669-678. Hsu, N. H., S. L. Wang, Y. C. Lin, G. D. Sheng, and J. F. Lee. 2009. Reduction of Cr(VI) by Crop-Residue-Derived Black Carbon. Environ. Sci. Technol. 43: 8801–8806. Hsu, N. H., S. L. Wang, Y. H. Liao, S. T. Huang, Y. M. Tzou, and Y. M. Huang. 2009. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. J. Hazard. Mater. 171: 1066–1070. James, B. R. 1996. The challenge of remediation chromium-contaminated soil, Environ. Sci. Technol. 30: 248–251. James, B. R. and R. J. Bartlett. 1983. Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual. 12: 177-180. Jardine, P. M., S. E. Fendorf, M. A. Mayes, I. L. Larsen, S. C. Brooks, and W. B. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33: 2939-2944. Kabata-Pendias, A. and H. Pendias. 1992. Trace Elements in Soils and Plants, 2nd ed., CRC Press, Inc., Boca Raton, Florida. pp. 365. Kim, C., Y. Lan, and B. Deng. 2007. Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction. Geochem J. 41: 397-405. Kim, C., Q. Zhou, B. Deng, E. C. Thornton, and H. Xu. 2001. Chromium(VI) reduction by H2S in aqueous media: stoichiometry and kinetics. Environ. Sci. Technol. 35: 2219 – 2225. Kozuh, N., J. Stupar, and B. Gorenc. 2000. Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol. 34: 112–119. Lan, Y., C. Li, J. Mao, and J. Sun. 2008. Influence of clay minerals on the reduction of Cr6+ by citric acid. Chemosphere 71: 781–787. Lapointe, B. E. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol. Oceanogr. 42: 1119-1131. Lopez-Ramon, M.V., F. Stoeckli, C. Moreno-Castilla, and F. Carrasco-Marin. 1999. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37:1215-1221. McBride, M. B. 1994. Environmental Chemistry of Soils. Oxford University Press, Inc. New York, New York. pp 326-339. Murray, J. W. 1974. The surface chemistry of hydrous manganese dioxide. J. Colloid Interface Sci. 46: 357-371. Nriagu, J. O. and J. M. Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134-139. Osemwotai, O., I. A. Ogboghodo, and E. A. Aghimien. 2005. Phosphorus retention in soils of nigeria - a review. Agric. Rev. 26: 148-152. Ottow JCG and G. Benckiser. 1982. Iron toxicity of rice as multiple nutrient soil stress. Trop Agric Res Series. 15:167-174. Oze, C., D. K Bird, and S. Fendorf. 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. N. Acad. Sci. 104: 6544-6549. Palmer, C. D. and P. R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92: 25–40. Palmer, C. D. and R. W. Puls. 1994. Natural attenuation of hexavalent chromium in groundwater and soils, Ground Water, EPA/540/S–94/505. Parks, G. A. 1965. The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxy complex systems. Chem. Rev. 65: 177-198. Puri, B. 1970. Chemistry and physcis of carbon. In: Walker PL, New York:Dekker. Rai, D., B. M. Sass, and D.A. Moore. 1987. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 26: 345-349. Raymahashay, B. C. and Praharaj, T. 1998. Chromate uptake by lateritic soils: Similarly with phosphate. Ind. J. Environ. Prot. 18: 933-936. Richard, F. C. and A. C. M. Bourg. 1991. Aqueous geochemistry of chromium: a review. Water Res. 25: 807-816. Saleh, F. Y., T. F. Parkerton, R. V. Lewis, J. H. Huang, and K. L. Dickson. 1989. Kinetics of chromium transformations in the environment. Sci. Total. Environ. 86: 25–41. Sass, B. M. and D. Rai. 1987. Volubility of Amorphous Chromium(III)-lron(III) Hydroxide Solid Solutions. Inorg. Chem. 26: 2228-2232. Schindler, R. W. and W. Stumm. 1987. The surface chemistry of oxides, hydroxides and oxide minerals. p.83-110. W. Stumm (ed.) Aquatic Surface Chemistry. Wiley, New York. Schmidt, M. W. I. and A. G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cy. 14:777-793. Schroeder, D. C. and G. F. Lee. 1975. Potential transformation of chromium in natural waters. Water Air Soil Pollut. 4: 355–365. Schwertmann, U. and R. M. Taylor. 1989. Iron oxides. pp379-438. In minerals in soil environments, 2nded (eds. J. B. Dixon and S. B. Weed) Chap 8. Soil Science Society of America. Madison. Seaman, J. C., P. M. Bertsch, and L. Schwallie. 1999. In Situ Cr(VI) reduction within coarse textured, oxide-coated soil and aquifer system. Environ. Sci. Technol. 33: 938-944. Sedlak, D. L. and P. G. Chan. 1997. Reduction of hexavalent chromium by ferrous iron. Geochim. Cosmochim. Acta 61: 2185–2192. Sheng, G., Y. Yang, M. Huang, and K. Yang. 2005. Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environ. Pollut. 134: 457-463. Smillie, R. H., K. Hunter, and M. Loutit. 1981. Reduction of chromium(VI) by bacterially produced hydrogen sulphide in a marine environment. Water Res. 15: 1351-1354. Srivastava, S., R. Nigam, S. Prakash, and M. M. Srivastava. 1999. Mobilization of trivalent chromium in presence of organic acids: A hydroponic study of wheat plant (triticum vulgare). Bull. Environ. Contam. Toxicol. 65: 524-530. Stollenwerk, K.G. and D. B. Grove. 1985. Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. J. Environ. Qual. 14: 150–155. Trebien, D. O. P., L. Bortolon, M. J. Tedesco, C. A. Bissani, and F. A. O. Camargo. 2011. Environmental factors affecting chromium-manganese oxidation-reduction reactions in soil. Pedosphere 21: 84–89. Umezawa, Y., T. Miyajima, M. Yamamuro, H. Kayanne, and I. Koike. 2002. Fine-Scale mapping of land-derived nitrogen in coral reefs by δ15N in macroalgae. Limnol. Oceanogr. 47: 1405-1416. Wang, X. S., L. F. Chen, F. Y. Li, K. L. Chen, W. Y. Wan, and Y. J. Tang. 2010. Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. .J. Hazard. Mater. 175: 816–822. Weaver, R. M., M. F. Hochella, and E. S. Ilton. 2002. Dynamicprocesses occurring at the Cr(III)-manganite (γ-MnOOH) interface: Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution. Geochem. Cosmochem. Acta 66: 4119–4132. Wittbrodt, P. R. and C. D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29: 255–263. Wittbrodt, P.R. and C.D. Palmer. 1996. Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ. Sci. Technol. 30: 2470-2477. Yang, J. W., Z. S. Tang, R. F. Guo, and S. Q. Chen. 2008. Soil surface catalysis of Cr(VI) reduction by citric acid. Environ. Prog. 27: 302-307. Zhao, D., A. K. SenGupta, and L. Stewart. 1998. Selective removal of Cr(VI) oxyanions with a new anion exchanger. Ind. Eng. Chem. Res. 37: 4383-4387.

Cr(VI) is one of the pollutants of major concern in the environment due to its high toxicity and carcinogenicity. In oxic soils, organic matter (OM) and black carbon (BC) are the predominant reductants that can reduce toxic Cr(VI) to less toxic Cr(III). However, Cr(VI) still can be leached to deeper layers of soil or even into groundwater. The low reduction rate of Cr(VI) is presumably attributed to the reactions of other soil constituents with Cr(VI) that inhibit the reduction of Cr(VI) by OM and BC. Thus, in this study, the influences of hydrous oxides of Fe and Mn on the Cr(VI) reduction of BC were investigated. The results showed that the co-existence of goethite with BC inhibited the Cr(VI) reaction of BC due to the fast adsorption rate and strong desorption hysteresis of Cr(VI) on goethite. Nonetheless, the prolonged reaction of Cr(VI) with BC and goethite removed Cr(VI) from solution through the adsorption of Cr(VI) and the subsequent reduction of adsorbed Cr(VI) to Cr(III). The resulting Cr(III) is either released back into solution or bound on BC. When MnO2 coexisted with BC, the aqueous Cr(III) were oxidized to Cr(VI) by MnO2. The Cr(III) oxidation and releasing back into solution occur as coupled reactions. The oxidation of aqueous Cr(III) by MnO2 inhibited the Cr(VI) reduction by BC when MnO2 coexisted with BC. At lower pH, the net positive charge on the surface of BC resulted in electrostatic repulsion between Cr(III) and BC. On the other hand, the oxidation of Cr(III) by Mn oxide led to the formation of Cr(VI) in solution, which was subsequently reduced by BC and consequently enhanced the removal of total Cr by BC at lower pH when BC coexisted with MnO2. In summary, the presence of Fe and Mn oxides inhibited the reduction of Cr(VI) by BC, leading to an increasing risk of Cr(VI) contamination in soil. Thus, the interactions between different soil consitutents need to be considered in order to have better understanding of the environmental risks of Cr contamination in soil.
其他識別: U0005-0108201216152200
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-101-7099039014-1.pdf780.02 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.