Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25654
標題: 鐵或錳氧化物於共存系統中對黑炭和六價鉻反應之影響
Reactions of hexavalent chromium with black carbon when co-existing with iron or manganese hydrous oxides
作者: 張雅菁
Chang, Ya- Jing
關鍵字: 六價鉻;Chromium(VI);黑炭;氧化物;Black carbon;Oxide
出版社: 土壤環境科學系所
引用: 陳仁炫。1990。肥料增進的原則與對策(三) 磷肥。農藥世界。84: 58-64。 楊登旭。1996。層狀錳氧化物的結構特性及其在土壤錳氧化物上之應用,博士論文,台灣大學,台北。 王明光。2000。土壤環境礦物學。藝軒圖書出版社。 陳瑤瓊。2008。不同因子影響具鐵錳影響之土壤對Cr(III)的氧化反應,碩士論文,台灣大學,台北。 行政院環境保護署。2011。土壤污染管制標準。環署土字第1000008495號。 行政院環境保護署。2011。地下水污染管制標準。環署土字第1000010141號。 蘇春田, 唐健生, 鄒勝章. 等. 2011. 錳元素在鐵錳結核土壤旱地作物的分布研究. 熱帶地理. 31: 262-265. Amacher, M. C. and D. E. Baker. 1982. Redox reactions involving chromium, plutonium and manganese in soils. DOE/DP/04515-1, Institute for Research on Land and Water Resources, Pennsylvania State University and U.S. Department of Energy, Las Vegas, NV, p.166. Anderson, L. D., D. B. Kent, and J. A. Davis. 1994. Batch experiments characterizing the reduction of Cr(VI) using suboxic material from a mildly reducing sand and graver aquifer: Environ. Sci. Technol. 28: 178-185. Ball, J. W. and D. K. Nordstrom. 1998. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J. Chem. Eng. 43: 895-918. Banerjee, D. and H. W. Nesbitt. 1999. Oxidation of aqueous Cr(III) at birnessite surfaces: constraints on reaction mechanism. Geochim. Cosmochim. Acta 63: 1671-1687. Barceloux, D. G. 1999. Chromium. Clin. Toxicol. 37: 173-194. Bartlett, R. J. and B. R. James. 1988. Mobility and bioavailability of chromium in soils. p.267-304. In J.O. Nriagu, and E. Nieboer (ed.) Chromium in the netural and human environments. John Wiley & Sons, New York. Bartlett, R. J. and B. R. James. 1996. Methods of soil analysis. 3rd ed. SSSA, Madison, WI. Bartlett, R. J. and J. M. Kimble. 1976. Behavior of chromium in soils: II. Hexavalent forms. J. Environ. Qual. 5: 383-386. Blowes, D. N., C. J. Ptacek, and J. L. Jambor. 1997. In-situ remediation of chromate contaminated groundwater using permeable reactive walls. Environ. Sci. Technol. 31: 3348 – 3357. Boehm, H. P. 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40: 145-149. Bojic, A. L., M. Purenovic, and D. Bojic. 2004. Removal of chromium (VI) from water by micro-alloyed aluminium composite (MAlC) under flow conditions. Water SA 30: 353-360. Buerge, I. J. and S. J. Hug. 1997. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ. Sci. Technol. 31: 1426–1432. Buerge, I. J. and S. J. Hug. 1998. Influence of organic ligands on chromium (VI) reduction by iron (II). Environ. Sci. Technol. 32: 2092 – 2099. Cao, Z. H., J. L. Ding, Z. Y. Hu, H. Knicker, I. Kogel-Knabner, L. Z. Yang, R. Yin, X. G. Lin, and Y. H. Dong. 2006. Ancient paddy soils from the Neolithic age in China’s Yangtze River Delta. Chin. Acad. Sci. 93: 232-236. Cary, E. E., W. H. Allaway, and O. E. Olson. 1977. Control of chromium concentrations in food plants. I. Absorption and translocation of chromium by plants. J. Agric. Food Chem. 25: 300–304. Cary, E. E., W. H. Allaway, and O. E. Olson. 1977. Control of chromium concentration in food plants, II. Chemistry of chromium in soils and its availability to plants. J. Agric. Food Chem. 25: 305–309. Chanda, M., and G. L. Rempel. 1993. Selective chromate recovery with quaternized poly (4-vinylpyridine). React. Polym. 21: 77-88. Chen, S. Y., S. W. Huang, P. N. Chiang, J. C. Liu, W. H. Kuan, J. H. Huang, J. T. Hung, Y. M. Tzou, C. C. Chen, and M. K. Wang. 2011. Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction. J. Hazard. Mater. 197: 337-344. Cornell R. M., and U. Schwertmann. 1996. The iron oxides. VCH, Weinheim, p.573. Dai, R., J. Liu, C. Yu, R. Sun, Y. Lan, and J.D. Maob. 2009. A comparativestudy of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere 76: 536–541. Deng, B. and A. T. Stone. 1996. Surface-catalyzed chromium(VI) reduction: The TiO2-CrVI-mandelic acid system. Environ. Sci. Technol. 30: 463–472. Deng, B. and A. T. Stone. 1996. Surface-catalyzed chromium(VI) reduction: Reactivity comparisons of different organic reductants and different oxide surfaces. Environ. Sci. Technol. 30: 2484–2494. D. Apte, A., V. Tare, and P. Bose. 2006. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. J. Hazard. Mater. 128: 164-174. Di Natale, F., A. Lancia, A. Molino, and D. Musmarra. 2007. Removal of chromium ions from aqueous solutions by adsorption on activated carbon and char. J. Hazard. Mater. 145: 381–390. Eary, L. E. and D. Rai. 1987. Kinetics of chromium (III) oxidation to chromium(VI) by reaction with manganese dioxide. Environ. Sci. Technol. 21: 1187–1193. Eary, L. E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22: 972-977. Eckert, J. M., J. J. Stewart, T. D. Waite, R. Szymezek, and K. L. Williams. 1990. The reduction of chromium(VI) at sub-μgL−1 levels by fulvic acid. Anal. Chim. Acta. 236: 357–362. Eiovitz, M. S. and W. Fish. 1994. Redox interactions of Cr(VI) and substituted phenols: kinetic investigation. Environ. Sci. Technol. 28: 2161-2169. Espenson, J. H. 1970. Oxidation of transition metal complexes by chromium(VI). Acc. Chem. Res. 3: 347-353. Fandeur, D., F. Juillot, G. Morin, L. Olivi, A. Cognigni, S. M. Webb, J. P. Ambrosi, E. Fritsch, F. Guyot, and G. E. Brown, JR. 2009. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environ. Sci. Technol. 43: 7384-7390. Fendorf, S. E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67: 55-71. Fendorf, S. E., M. J. Eick, P. R. Grossl, and D. L. Sparks. 1997. Arsenate and chromate retention mechanisms on goethite. 1. Surface Structure. J. Am. Chem. Soc. 31: 315-320. Fendorf, S. E. and R. J. Zasoski. 1992. Chromium(III) oxidation by δ-MnO2. Environ. Sci. Technol. 26: 79-85. Feng, X. H., L. M. Zhai, W. F. Tan, W. Zhao, F. Liu, and J. Z. He. 2006. The controlling effect of pH on oxidation of Cr(III) by manganese oxide minerals. J. Colloid Interface Sci. 298: 258-266. Florence, T. M. 1982. The speciation of trace elements in waters. Talanta 29: 345-64. Frederick, N. R. 1975. Hxavalent chromium in the ground water in Paradise. Valley, Arizona, Ground Water. 13: 516-527. Gad, S. C. 1989. Acute and chronic systemic chromium toxicity. Sci Total Environ. 86: 149-157. Gonzalez, A. R., K. Ndung''u, and A. R. Flegal. 2005. Natural occurrence of hexavalent chromium in the aromas red sands aquifer, California. Environ. Sci. Technol. 39: 5505-5511. Grossl, P. R., M. J. Eick, D. L. Sparks, S. Goldberg, and C. C. Ainsworth. 1997. Arsenate and chromate retention mechanisms on goethite. 2. kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31: 321-326. Handa B. K. 1988. Occurance and distribution of chromium in natural waters of India. In: Nriagu J.O. & Nieboer E. Chromium in Natural and Human Environments. New York: Wiley Interscience: 189-215. Hassmanova, V., J. Vaneckova, and K. Bousova. 2000. Occupational diseases caused by chromium and its compounds. Acta. Med. 43: 33-36. Healy, T. W., A. P. Herring, and D. W. Fuerstenau. 1966. Effect of crystal structure on the surface properties of a series of manganese dioxides. J. Colloid Interface Sci. 21: 435-444. Hiemstra, T. and W. H. Van Riemsdijk. 1996. A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid Interface Sci. 179: 488-508. Hingston, F. J., R. J. Atkinson, A. M. Posner and J. P. Quirk. 1968. Specific adsorption of anion on goethite. 9th Int. Cong. Soil Sci. Trans. 1: 669-678. Hsu, N. H., S. L. Wang, Y. C. Lin, G. D. Sheng, and J. F. Lee. 2009. Reduction of Cr(VI) by Crop-Residue-Derived Black Carbon. Environ. Sci. Technol. 43: 8801–8806. Hsu, N. H., S. L. Wang, Y. H. Liao, S. T. Huang, Y. M. Tzou, and Y. M. Huang. 2009. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. J. Hazard. Mater. 171: 1066–1070. James, B. R. 1996. The challenge of remediation chromium-contaminated soil, Environ. Sci. Technol. 30: 248–251. James, B. R. and R. J. Bartlett. 1983. Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual. 12: 177-180. Jardine, P. M., S. E. Fendorf, M. A. Mayes, I. L. Larsen, S. C. Brooks, and W. B. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33: 2939-2944. Kabata-Pendias, A. and H. Pendias. 1992. Trace Elements in Soils and Plants, 2nd ed., CRC Press, Inc., Boca Raton, Florida. pp. 365. Kim, C., Y. Lan, and B. Deng. 2007. Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction. Geochem J. 41: 397-405. Kim, C., Q. Zhou, B. Deng, E. C. Thornton, and H. Xu. 2001. Chromium(VI) reduction by H2S in aqueous media: stoichiometry and kinetics. Environ. Sci. Technol. 35: 2219 – 2225. Kozuh, N., J. Stupar, and B. Gorenc. 2000. Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol. 34: 112–119. Lan, Y., C. Li, J. Mao, and J. Sun. 2008. Influence of clay minerals on the reduction of Cr6+ by citric acid. Chemosphere 71: 781–787. Lapointe, B. E. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol. Oceanogr. 42: 1119-1131. Lopez-Ramon, M.V., F. Stoeckli, C. Moreno-Castilla, and F. Carrasco-Marin. 1999. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37:1215-1221. McBride, M. B. 1994. Environmental Chemistry of Soils. Oxford University Press, Inc. New York, New York. pp 326-339. Murray, J. W. 1974. The surface chemistry of hydrous manganese dioxide. J. Colloid Interface Sci. 46: 357-371. Nriagu, J. O. and J. M. Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134-139. Osemwotai, O., I. A. Ogboghodo, and E. A. Aghimien. 2005. Phosphorus retention in soils of nigeria - a review. Agric. Rev. 26: 148-152. Ottow JCG and G. Benckiser. 1982. Iron toxicity of rice as multiple nutrient soil stress. Trop Agric Res Series. 15:167-174. Oze, C., D. K Bird, and S. Fendorf. 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. N. Acad. Sci. 104: 6544-6549. Palmer, C. D. and P. R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92: 25–40. Palmer, C. D. and R. W. Puls. 1994. Natural attenuation of hexavalent chromium in groundwater and soils, Ground Water, EPA/540/S–94/505. Parks, G. A. 1965. The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxy complex systems. Chem. Rev. 65: 177-198. Puri, B. 1970. Chemistry and physcis of carbon. In: Walker PL, New York:Dekker. Rai, D., B. M. Sass, and D.A. Moore. 1987. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 26: 345-349. Raymahashay, B. C. and Praharaj, T. 1998. Chromate uptake by lateritic soils: Similarly with phosphate. Ind. J. Environ. Prot. 18: 933-936. Richard, F. C. and A. C. M. Bourg. 1991. Aqueous geochemistry of chromium: a review. Water Res. 25: 807-816. Saleh, F. Y., T. F. Parkerton, R. V. Lewis, J. H. Huang, and K. L. Dickson. 1989. Kinetics of chromium transformations in the environment. Sci. Total. Environ. 86: 25–41. Sass, B. M. and D. Rai. 1987. Volubility of Amorphous Chromium(III)-lron(III) Hydroxide Solid Solutions. Inorg. Chem. 26: 2228-2232. Schindler, R. W. and W. Stumm. 1987. The surface chemistry of oxides, hydroxides and oxide minerals. p.83-110. W. Stumm (ed.) Aquatic Surface Chemistry. Wiley, New York. Schmidt, M. W. I. and A. G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cy. 14:777-793. Schroeder, D. C. and G. F. Lee. 1975. Potential transformation of chromium in natural waters. Water Air Soil Pollut. 4: 355–365. Schwertmann, U. and R. M. Taylor. 1989. Iron oxides. pp379-438. In minerals in soil environments, 2nded (eds. J. B. Dixon and S. B. Weed) Chap 8. Soil Science Society of America. Madison. Seaman, J. C., P. M. Bertsch, and L. Schwallie. 1999. In Situ Cr(VI) reduction within coarse textured, oxide-coated soil and aquifer system. Environ. Sci. Technol. 33: 938-944. Sedlak, D. L. and P. G. Chan. 1997. Reduction of hexavalent chromium by ferrous iron. Geochim. Cosmochim. Acta 61: 2185–2192. Sheng, G., Y. Yang, M. Huang, and K. Yang. 2005. Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environ. Pollut. 134: 457-463. Smillie, R. H., K. Hunter, and M. Loutit. 1981. Reduction of chromium(VI) by bacterially produced hydrogen sulphide in a marine environment. Water Res. 15: 1351-1354. Srivastava, S., R. Nigam, S. Prakash, and M. M. Srivastava. 1999. Mobilization of trivalent chromium in presence of organic acids: A hydroponic study of wheat plant (triticum vulgare). Bull. Environ. Contam. Toxicol. 65: 524-530. Stollenwerk, K.G. and D. B. Grove. 1985. Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. J. Environ. Qual. 14: 150–155. Trebien, D. O. P., L. Bortolon, M. J. Tedesco, C. A. Bissani, and F. A. O. Camargo. 2011. Environmental factors affecting chromium-manganese oxidation-reduction reactions in soil. Pedosphere 21: 84–89. Umezawa, Y., T. Miyajima, M. Yamamuro, H. Kayanne, and I. Koike. 2002. Fine-Scale mapping of land-derived nitrogen in coral reefs by δ15N in macroalgae. Limnol. Oceanogr. 47: 1405-1416. Wang, X. S., L. F. Chen, F. Y. Li, K. L. Chen, W. Y. Wan, and Y. J. Tang. 2010. Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. .J. Hazard. Mater. 175: 816–822. Weaver, R. M., M. F. Hochella, and E. S. Ilton. 2002. Dynamicprocesses occurring at the Cr(III)-manganite (γ-MnOOH) interface: Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution. Geochem. Cosmochem. Acta 66: 4119–4132. Wittbrodt, P. R. and C. D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29: 255–263. Wittbrodt, P.R. and C.D. Palmer. 1996. Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ. Sci. Technol. 30: 2470-2477. Yang, J. W., Z. S. Tang, R. F. Guo, and S. Q. Chen. 2008. Soil surface catalysis of Cr(VI) reduction by citric acid. Environ. Prog. 27: 302-307. Zhao, D., A. K. SenGupta, and L. Stewart. 1998. Selective removal of Cr(VI) oxyanions with a new anion exchanger. Ind. Eng. Chem. Res. 37: 4383-4387.
摘要: 
Cr(VI)具有高毒性和致癌性,工業排放為Cr(VI)進入環境造成污染的主要來源。土壤中的有機質和黑炭為Cr(VI)主要的還原劑之一,已被證實能還原Cr(VI)成毒性和危害較低的Cr(III)。然而,卻仍有Cr(VI)被淋洗至較深土層甚至污染地下水的情況,推測是由於土壤組成複雜,其他組成與Cr(VI)的反應可能會延緩Cr(VI)的還原速率和減少Cr(VI)的還原量。因此本研究選擇黑炭為Cr(VI)還原劑的代表,探討氧化鐵和氧化錳與黑炭共存時,對黑炭與Cr(VI)的吸附和還原轉化之影響。結果顯示,針鐵礦與黑炭共存系統中,針鐵礦會與黑炭競爭吸附溶液中的Cr(VI),且因為遲滯效應導致吸附於針鐵礦上的Cr(VI)不易脫附釋出,而限制了黑炭對Cr(VI)之還原反應。但長時間反應後,Cr(VI)仍逐漸被黑炭所還原,所生成的Cr(III)則鍵結於黑炭表面。氧化錳與黑炭共存系統中,則分別探討Cr(III)和Cr(VI)的吸附和氧化還原反應。黑炭雖然可吸附Cr(VI)並將其還原為Cr(III),但氧化錳會氧化溶液中Cr(III)成Cr(VI),而抑制了Cr(VI)在黑炭表面的還原轉化。隨著反應時間的增加,氧化錳本身會逐漸被還原溶解,因此,反應產物最終仍以鍵結於黑炭上的Cr(III)物種為主。另外,黑炭與Cr(III)反應的系統中,在低pH時,黑炭表面具有淨正電荷而不利於吸附Cr(III),氧化錳將Cr(III)氧化成Cr(VI)的型態後,反而可藉由黑炭對Cr(VI)的還原反應,促進溶液中整體鉻的移除,將Cr(III)固定於黑炭上而降低其再被氧化成毒性較高的Cr(VI)之風險。總結本研究之結果,土壤中其他組成與Cr(VI)的反應,會對土壤中還原劑還原Cr(VI)之反應產生抑制的影響,因此可能會提高進入土壤中的Cr(VI)之移動性和有效性,進而增加其造成污染的風險。本研究結果亦顯示過去藉由了解單一土壤組成和Cr(VI)或其他污染物反應來推估其環境宿命有其不足之處,必須考慮不同組成共存之相互作用的影響,以及此相互作用如何決定鉻或其他污染物的物種轉化和傳輸過程,才有助於提供污染處理和評估上有效的資訊。

Cr(VI) is one of the pollutants of major concern in the environment due to its high toxicity and carcinogenicity. In oxic soils, organic matter (OM) and black carbon (BC) are the predominant reductants that can reduce toxic Cr(VI) to less toxic Cr(III). However, Cr(VI) still can be leached to deeper layers of soil or even into groundwater. The low reduction rate of Cr(VI) is presumably attributed to the reactions of other soil constituents with Cr(VI) that inhibit the reduction of Cr(VI) by OM and BC. Thus, in this study, the influences of hydrous oxides of Fe and Mn on the Cr(VI) reduction of BC were investigated. The results showed that the co-existence of goethite with BC inhibited the Cr(VI) reaction of BC due to the fast adsorption rate and strong desorption hysteresis of Cr(VI) on goethite. Nonetheless, the prolonged reaction of Cr(VI) with BC and goethite removed Cr(VI) from solution through the adsorption of Cr(VI) and the subsequent reduction of adsorbed Cr(VI) to Cr(III). The resulting Cr(III) is either released back into solution or bound on BC. When MnO2 coexisted with BC, the aqueous Cr(III) were oxidized to Cr(VI) by MnO2. The Cr(III) oxidation and releasing back into solution occur as coupled reactions. The oxidation of aqueous Cr(III) by MnO2 inhibited the Cr(VI) reduction by BC when MnO2 coexisted with BC. At lower pH, the net positive charge on the surface of BC resulted in electrostatic repulsion between Cr(III) and BC. On the other hand, the oxidation of Cr(III) by Mn oxide led to the formation of Cr(VI) in solution, which was subsequently reduced by BC and consequently enhanced the removal of total Cr by BC at lower pH when BC coexisted with MnO2. In summary, the presence of Fe and Mn oxides inhibited the reduction of Cr(VI) by BC, leading to an increasing risk of Cr(VI) contamination in soil. Thus, the interactions between different soil consitutents need to be considered in order to have better understanding of the environmental risks of Cr contamination in soil.
URI: http://hdl.handle.net/11455/25654
其他識別: U0005-0108201216152200
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-101-7099039014-1.pdf780.02 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.