Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2576
DC FieldValueLanguage
dc.contributor陳政雄zh_TW
dc.contributor趙崇禮zh_TW
dc.contributor盧銘詮zh_TW
dc.contributor.advisor蔡志成zh_TW
dc.contributor.author周思成zh_TW
dc.contributor.authorJhou, Sih-Chengen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-05T11:43:35Z-
dc.date.available2014-06-05T11:43:35Z-
dc.identifierU0005-3008201013165300zh_TW
dc.identifier.citation[Weber et al, 1984] H. Weber, J. Herberger and R. Pilz, “Turning of machinable glass ceramics with an ultrasonically vibrated tool,” Annals of the CIRP, v33, n1, p85-87, 1984. [Moriwaki & Shamoto, 1992] T. Moriwaki and E. Shamoto, “Ultraprecision ductile cutting of glass by applying ultrasonic vibration,” CIRP Annals-Manufacturing Tcehnology, v41, n1, p141-144, 1992. [Moriwaki & Shamoto, 1995] T. Moriwaki and E. Shamoto, “Ultrasonic elliptical vibration cutting,” CIRP Annals-Manufacturing Tcehnology, v44, n1, p31-34, 1995. [Kim & Lee, 1997] J. D. Kim and E. S. Lee, “Ultrasonic vibration cutting of a hypereutectic Al-Si alloy,” Aluminium (Dusseldorf), v73, n9, p624, 1997. [Kim & Choi, 1997] J. D. Kim and I. H. Choi, “Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics,” Materials Processing Technology, v68, p89-98, 1997. [Shamoto et al, 1999] E. Shamoto, M. Chunxiang and T. Moriwaki, “Ultraprecision ductile cutting of glass by ultrasonic elliptical vibration cutting,” Proc of 1st Int Conf of European Society Presion Engineering and Nanotechnology, p408-411, 1999. [Schumutz et al,2001] J. Schumutz, E. Brinksmeier and E. Bischoff, “Sub-surface deformation in vibration cutting of copper,” Precision Engineering, v25, n3, p218-223, July, 2001. [Gao et al, 2002] G. F. Gao, B. Zhao, F. Jiao and C. S. Liu, “Research on the influence of the cutting conditions on the surface microstructure of ultra-thin wall parts in ultrasonic vibration cutting,” Journal Materials Processing Technology, v 129, n 1-3, p 66-70, October 11, 2002. [Babitsky et al, 2004] V. I. Babitsky, A. V. Mitrofanov and V. V. Silberschmidt, “Ultrasonically assisted turning of aviation materials: simulations and experimental study,” Ultrasonics, v42, p81-86, 2004. [賴耿陽,2001] 賴耿陽,“超音波工學理論實務“,復漢出版社,2001。 [賴耿陽,2001] 賴耿陽,“超音波工學“,復文書局,2005。 [簡國諭,2002] 簡國諭,“超音波振動輔助車削之研究”,中正大學機械工程學系碩士論文,2002。 [施景翔,2006] 施景翔,“超音波振動輔助切削之共振頻率偵測追蹤電路之研究”,中正大學機械工程學系碩士論文,2006。 [吳慧帆,2008] 吳慧帆,“超音波振動輔助切削裝置之開發”,中正大學機械工程系碩士論文,2008。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2576-
dc.description.abstract隨著產業技術之發展,高表面精度與硬脆性材料之加工技術亦廣為應用,在此需求下常使用振動輔助切削來進行加工。本研究即針對振動輔助車削(VAT)之效果進行探討,研究中先以座標轉換的方法推導工件與刀具之相對切削路徑,並以此為基礎,進一步分析切削深度、斷續切削與迴光切削之效果,並由切削速度比分析重複切削區域,其中切削速度比定義為最大振動速度與切削速度之比值;研究發展之理論除以文獻數據進行比較之外,並設計反覆性切削與VAT實驗以與理論分析比較。 研究結果顯示,VAT之切削速度比會影響切削方向而造成斷續切削與迴光切削,當切削速度比越大時其迴光切削區域越大,分析亦顯示在此情況下切削深度變動量不及千分之一而可忽略。而由實驗亦驗證反覆切削之擦光效果能改善加工表面之粗糙度,而由VAT實驗亦觀察到與理論分析一致之反覆切削之表面紋路,顯示本研究所推導之理論的有效性。zh_TW
dc.description.abstractWith the development of industrial technology, high surface quality and hard and/or brittle machining technologies are widely used. Vibration assisted machining is therefore often employed under this demand. This thesis is aimed to investigate the performance of Vibration assisted turning (VAT). Relative cutting path between the workpiece and the tool tip is first analyzed based on the frame transformation method. The effect of VAT on the depth of cut, discrete cutting and repetitive cutting are then investigated based on the analysis of cutting path. The repetitive cutting, a process similar to burnishing, is found related to the speed ratio, defined as the ratio of maximum vibrating speed to the cutting speed. In addition to the analysis of theoretical model, repetitive cutting and VAT experiments are also designed and conducted to verify the model. The results showed that the speed ratio affects the cutting direction and thus results in discrete cutting and repetitive cutting. The area of repetitive cutting increases when the speed ratio increases. The variation of depth of cut, however, is less then one thousandths and can be neglected at this condition. Repetitive cutting experiment showed that the burnishing effect improves surface quality of metal cutting. The patterns of repetitive cutting are also observed from the VAT experiment. The results verified the theoretical model developed in this thesisen_US
dc.description.tableofcontents致謝 I 摘要 II Abstract III 圖目錄 VI 表目錄 IX 符號表 XI 第一章 緒論 1 1.1 研究動機與目標 1 1.2 文獻回顧 2 1.3 研究方法與步驟 10 第二章 理論推導與加工参數模擬 12 2.1 振動輔助車削路徑推導 12 2.2切削深度分析 19 2.3 斷續切削與迴光切削分析 23 2.4 切削速度比與重複切削分析 26 第三章 實驗規劃 39 3.1 實驗流程 39 3.2 實驗參數規劃 40 3.3 實驗系統架設與設備 42 第四章 實驗結果與分析 49 4.1 反覆車削實驗之表面粗糙度分析 49 4.2 振動輔助車削表面形貌分析 54 第五章 結論與未來展望 66 5.1 結論與討論 66 5.2 未來展望 66 參考文獻 67zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3008201013165300en_US
dc.subjectVibration assisted turning (VAT)en_US
dc.subject振動輔助車削(VAT)zh_TW
dc.subjectrepetitive cuttingen_US
dc.subjectsurface qualityen_US
dc.subjectcutting pathen_US
dc.subject反覆性切削zh_TW
dc.subject表面品質zh_TW
dc.subject切削路徑zh_TW
dc.title振動輔助車削之加工效果探討zh_TW
dc.titleAn Investigation on Machining Performance of Vibration-Assisted Turningen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
Appears in Collections:機械工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.