Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2619
標題: 平面雙機械臂之順滑控制法
Sliding Mode for the Control of Planar Dual Arm Robot Systems
作者: 沈奇聰
關鍵字: Dual Arm Robot;雙機械臂;Sliding Mode Control;Sliding Mode for the Control of Planar Dual Arm Robot Systems;順滑控制;平面雙機械臂之順滑控制法
出版社: 機械工程學系
摘要: 
本篇論文的目的在提出一套新的理論架構,嘗試在有參數誤差的情況下,對雙機械臂進行位置及力量控制。
以往工業界所設計的機械臂控制器,大都是以簡單的PID位置控制器為主,但是如果要提高機械臂運動的精密度及應用在束縛性運動,這類型的控制器便力有未逮。為了解決這個問題,本文將結合順滑控制與PID控制的觀念,同時對機械臂做位置及力量控制,並將之應用到具參數不確定性之雙機械臂系統。
夾持物件後的雙機械臂系統,我們可以視之為閉鍊(closed chain)的多體機械系統(multibody mechanical system)。建立此閉鍊系統的動態方程式時,應用Lagrange Multiplier定理,可以將系統的拘束方程式融入動態方程式中,然後得到拘束動態方程式;透過求解系統的拘束動態方程式,則可以求得Lagrange multipliers,我們可以透過Lagrange multipliers來控制物件的受力。由電腦模擬結果可知,透過此種理論架構,我們可以進行雙機械臂的位置及力量控制。

The objective of this thesis is to propose a new control strategy for control of position and force of dual-arm robots with parameters error.
Industrial robots often use simple PID position control. This type of controller fails when high position accuracy or contact motion is required. To cope with this problem, the concept of Sliding Mode Control and PID control are combined to control the position and force of robot manipulators simultaneously. The proposed controller is applied to dual-arm robots with parameters error.
Dual-arm robots holding with the object can be seen as a closed chain multibody mechanical system. During establishing the equation of motion of the closed chain multibody mechanical system, one can introduce the constrained equations into equations of motion, by applying Lagrange Multiplier theorem, and then obtain the constrained equations of motion. Solving the constrained equations of motion, one can get the Lagrange multipliers. We can control the internal force of the object through Lagrange multipliers. From the verification of the simulations, effects of the new strategy for dual-arm robot's position/force control had been justified.
URI: http://hdl.handle.net/11455/2619
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.