Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2671
標題: 雙軸三自由度精密定位系統之控制研究
A Study on the Conrol of Dual-axis 3DOF Precision Positioning System
作者: 謝銘謙
關鍵字: N-times feed-forward control law;N次前饋補償控制法則;Piezo-electric actuators;Capacitive position sensors;PID feedback control theory;壓電陶瓷致動器;電容式感測器;PID回饋控制
出版社: 機械工程學系
摘要: 
由於科技的發展及工業界對於高精度與高性能設備的需求,因此精密的生產設備及量測儀器相對的被重視,而要提升設備的精度其關鍵技術在於平台的定位技術,因此本研究主要是針對超精密的定位技術作研究,希望可以在實驗室的環境下,以簡單的架構、低廉的成本來達成長行程高精度的定位目的。
在此開發一個雙軸三自由度具長行程能力之超精密定位系統,研究中將使用傅[11]所設計之雙軸三自由度撓性微動平台,此撓性平台結構為單層即具有X軸、Y軸及q軸的運動能力,以這個撓性平台結構當做控制平台可以使控制上的實現更容易達成,整個實驗是以壓電陶瓷致動器來推動撓性結構運動,再利用電容感測器來進行位置的檢測,控制器的部分採用PID控制法則與N次前饋補償法則,並利用電腦系統來實現,然後經由所設計的控制法則運算處理後下達控制命令,經由AD/DA卡做訊號的轉換輸出控制命令,致動器在接收到控制命令後推動微動平台做動,以達到控制的目標。
實驗控制的結果,X軸行程可達到260mm以上,Y軸行程可達到300mm以上;步階定位的誤差可控制在40 nm以下,轉角誤差控制在0.9×10-6 rad以下;斜坡軌跡與循圓軌跡之追蹤誤差,皆可達到40 nm 以下,轉角誤差在1.0×10-6 rad以下。

Due to sciential technology development and industrial with demanding on high precision and high performance, precision machining equipment and measuring instrument have been paid much attention recently, The key technology to improve their precision is the positioning technology. In this thesis, it is focusing on the precision positioning technology, the objective of this research is to build up a long-range and high precision system with a simple structure and low cost.
In this study, the control system of a dual-axis with three degree of freedom stage was build. Piezo-electric actuators were used to drive the positioning stage. Capacitive position sensors were used to measure the displacement of this stage. PID feedback control theory and N-times feed-forward control law were used for the controlling. The control signal was transformed by an AD/DA card and output to the actuators then driven the micro-positioning stage.
From the experiment results, it was shown that the travel ranges of this stage were 260 μm and 300 μm on X- and Y-axis respectively. The position error was controlled within 40 nm, while the rotational error was within 0.9×10-6 rad, for the stepping test. The tracking error was less than 40 nm with rotational error less than 1.0×10-6 rad for ramp and circular tracking test.
URI: http://hdl.handle.net/11455/2671
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.