Please use this identifier to cite or link to this item:
標題: 葉片施用微生物對斜紋夜蛾取食偏好及生長表現之影響
Effect of microorganisms on Spodoptera litura feeding preferences and growth by foliar application
作者: 黃靖幃
Huang, Ching-Wei
關鍵字: 取食偏好;feeding preference;PGP 微生物;忌避物質;斜紋夜蛾;PGP microorganisms;repellent;Spodoptera litura
出版社: 國際農學研究所
引用: References 費雯綺、王喻其。2007。植物保護手冊-蔬菜篇。行政院農業委員會農業藥物毒物試驗所。p 229。 張煥英、李兆彬、陳昇寬、林明瑩、宋一鑫。2008。十字花科作物重要害蟲之發生與防治。台南區農業專訊66期。 楊秀珠、余思葳。甜(辣)椒之病蟲害發生與管理。 2012。合理、安全及有效使用農藥輔導較材-蔬菜9。行政院農業委員會農業藥物毒物試驗所。(electronic version) Barka, E .A., J. Nowak, and C. Clement. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Applied and environmental microbiology 72: 7246-7252. Bhattacharyya, P. N., and D. K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28: 1327-1350. Brown, M., and A. A. Hebert. 1997. Insect repellents: an overview. Journal of the American Academy of Dermatology 36: 243-249. Bura, R., A. Vajzovic, and S. L. Doty. 2012. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol. Journal of industrial Microbiology & Biotechnology 39: 1003-1011. Chen, J. 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility, International Workshop on Sustained Management of the soil-rhizosphere system for efficient crop production and fertilizer use. 16: 1-20. Ciccillo, F., A. Fiore, A. Bevivino, C. Dalmastri, S. Tabacchioni and L. Chiarini. 2002. Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environmental Microbiology 4: 238-245. Daisy, B. H., G.A. Strobel, U. Castillo, D. Ezra, J. Sears, D. K. Weaver, and J. B. Runyon. 2002. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148: 3737-3741. Dicke, M., and I. T. Baldwin. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends in plant science 15: 167-175. Esitken, A. 2011. Use of Plant Growth Promoting Rhizobacteria in Horticultural Crops. In Bacteria in Agrobiology: Crop Ecosystems: 189-235. Gholamnejad, J., H. R. Etebarian, and N. Sahebani. 2010. Biological control of apple blue mold with Candida membranifaciens and Rhodotorula mucilaginosa. African Journal of Food Science 4: 1-7. Gupta, V. V. S. R. 2012. Beneficial microorganisms for sustainable agriculture. Microbiology Australia 113. Herman, M. A. B., B. A. Nault, and C. D. Smart. 2008. Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Protection 27: 996-1002. Huang, J. S. 2008. Evaluation for efficacy of Bacillus mycoides on Control of Cabbage Seedling Diseases, master thesis. De. Plant Pathology, National Chung Hsing University. (in Chinese with English abstract) Isman, M. B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51: 45-66. Kloepper, J.W., M.N. Schroth, and T.D. Miller. 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70: 1078-1082. Lee, M. K., W. J. Yim, Y. S. Kim, and T. M.Sa. 2011. Foliar Colonization and Growth Promotion of Red Pepper (Capsicum annuum L.) by Methylobacterium oryzae CBMB20. Journal of Applied Biological Chemistry 54: 120-125. Li, R., H. Zhang, W. Liu, and X. Zheng. 2011. Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. International journal of food microbiology 146: 151-156. Materska, M., and I. Perucka. 2005. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). Journal of Agricultural and Food Chemistry 53: 1750-1756. Melvin, J. M., and N. Muthukumaran. 2008. Role of Certain Elicitors on the Chemical Induction of Resistance in Tomato against the Leaf Caterpillar Spodoptera litura Fab. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 36: 71-75. Nakayan, P., A. Hameed, S. Singh, L. S. Young, M. H. Hung and C. C. Young. 2013. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant and Soil: 1-15. Nandakumar, R., S. Babu, R. Viswanathan, T. Raguchander, and R. Samiyappan. 2001. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry 33: 603-612. Nout, M.J.R., and R.J. Bartelt. 1998. Attraction of a flying nitidulid (Carpophilus humeralis) to volatiles produced by yeasts grown on sweet corn and a corn-based medium. Journal of Chemical Ecology 24: 1217-1239. Orhan, E., A. Esitken, S. Ercisli, M. Turan, and F. Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae 111: 38-43. Paran, I., E. Aftergoot, and C. Shifriss. 1998. Variation in Capsicum annuum revealed by RAPD and AFLP markers. Euphytica 99: 167-173. Pare, P. W., and J. H Tumlinson. 1996. Plant volatile signals in response to herbivore feeding. Florida Entomologist 79: 93-103. Peterson, C., and J. Coats. 2001. Insect repellents-past, present and future. Pesticide Outlook 12: 154-158. Pimentel, D., P. Hepperly, J. Hanson, D. Douds, and R. Seidel. 2005. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 55: 573-582. Pineda, A., S. S. Zheng, J. JA van Loon, C. M. J. Pieterse and M. Dicke. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science 15: 507-514. Pirlak, L., M. Turan, F. Sahin, and A. Esitken. 2007. Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth, and nutrient element contents of leaves. Journal of Sustainable Agriculture 30: 145-155. Radja Commare, R., R. Nandakumar, A. Kandan, S. Suresh, M. Bharathi, T. Raguchander, and R. Samiyappan. 2002. Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Protection 21: 671-677. Ranamukhaarachchi, D. B., M. T. Nguyen and L. Senaratne. 2011. Efficacy of antagonist strains of Bacillus megaterium, Enterobacter cloacae, Pichia guilliermondii and Candida ethanolica against bacterial wilt disease of tomato. Journal of Phytology 3: 1-10. Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, J. W. Kloepper and P. W. Pare. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology 134: 1017-1026. Ramamoorthy, V., R. Viswanathan, T. Raguchander, V. Prakasam, and R. Samiyappan. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection 20: 1-11. Saravanakumar, D., K. Muthumeena, N. Lavanya, S. Suresh, L. Rajendran, T. Raguchander, and R. Samiyappan. 2007. Pseudomonas‐induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Management Science 63: 714-721. Saravanakumar, D., N. Lavanya, B. Muthumeena, T. Raguchander, S. Suresh, and R. Samiyappan. 2008. Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. Journal of Applied Entomology 132: 469-479. Senthilraja, G., T. Anand, J. S. Kennedy, T. Raguchander, and R. Samiyappan. 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiological and Molecular Plant Pathology 82: 10-19. Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229-288. Xin, G., D. Glawe, and S. L. Doty. 2009. Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycological Research 113: 973-980. Yadav, J., C. W. Tan, and S. Y. Hwang. 2010. Spatial variation in foliar chemicals within radish (Raphanus sativus) plants and their effects on performance of Spodoptera litura. Environmental Entomology 39: 1990-1996. Zhao, Y., K. Tu, X. Shao, W. Jing, and Z. Su. 2008. Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit. Postharvest Biology and Technology 49: 113-120.
農業上經常使用化學肥料及農藥來增加產量及防治病蟲害。雖然合成肥料及農藥有速效及低成本之優點,卻也伴隨著環境汙染及農藥殘留等問題。為了改善這些問題,生物性資材開始受到重視,微生物製劑逐漸開發作為生物性肥料及農藥。許多有益微生物之研究著重於微生物施用在土壤中促進植物生長及防治病蟲害之效果,較少研究有益微生物對於昆蟲的直接影響。本試驗為觀察三種不同有益微生物B1 (Burkholderia phytofirmans, Rhizobium miluonense 及 Rhizobium lusitanum之混合菌液)、F1 (Meyerozyma guilliermondii) 及 F2 (Rhodotorula mucilaginosa)直接施用在青椒及甘藍葉片上對於斜紋夜蛾之取食偏好及短期生長表現之影響。實驗包含兩部份,第一部份觀察斜紋夜蛾對於不同微生物處理之葉片之取食偏好,並觀察不同時間點斜紋夜蛾選擇之變化;此實驗包括兩兩比較及多重比較。第二部份觀察斜紋夜蛾取食不同微生物處理之葉片後短期生長表現及其取食葉面積。青椒葉的部份,當NC-S(加有展著劑之control組) 和 F1比較及F1和F2比較的情況下,斜紋夜蛾會偏好NC-S及F2;甘藍葉則是只有在F1和F2兩兩比較的清況下,斜紋夜蛾偏好F2。在多重比較下,則無明顯偏好。不同處理之葉片餵食斜紋夜蛾後其短期生長表現及取食面積則無顯著差異。由結果推測,本試驗所使用之有益微生物會影響斜紋夜蛾取食偏好但對短期生長表現無影響。

Chemical fertilizer and pesticide are widely used in agriculture system. Although chemicals work fast, direct and low cost, there are several environmental problems came into view after of chemical materials applying. Therefore, bio-materials such as microorganisms came into notice. Soil-born microorganisms have the potential to become biofertilizers and biopesticides because they have the ability to promote plant growth and help plant to against diseases and pests. However, seldom studies had focused on the direct effect of microorganisms on insects. Thus, in the study, we focus on the direct effects of microorganisms on insects. Microorganisms were applied to foliage directly and analyze the repel effect on insect herbivore. The experiment was conducted into choice experiment and non choice experiment to understand the feeding preference and growth development of Spodoptera litura on cabbage and bell pepper leaves. Five treatments used in the experiments, NC treatment (negative control), NC–S treatment (negative control with surfactant), B1 treatment (the mixture bacteria of Burkholderia phytofirmans, Rhizobium miluonense and Rhizobium lusitanum), F1 treatment (Meyerozyma guilliermondii) and F2 treatment ( Rhodotorula mucilaginosa). The results showed that in the NC-S vs. F1 comparison and F1 vs. F2 comparison on bell pepper leaves, S. litura preferred NC-S or F2 than F1. In the F1 vs. F2 comparison on cabbage leaves, S. litura preferred F2 than F1. Based on the results, it is believed that exogenous microorganisms can affect insect feeding preference. However, the relative growth rate (RGR) and the consumed leaf area had no significant difference among the treatments both in bell pepper and cabbage leaves. This result suggested that these microorganisms had no direct effect on insect short term development.
其他識別: U0005-2308201306295000
Appears in Collections:國際農學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.