Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/27386
標題: 台灣地區種植能源作物之可行性研究-以生質柴油為例
The Feasibility Analysis of Planting Energy Crop in Taiwan -A Case Study of Biodiesel
作者: 蕭丁齊
Hsiao, Ding-Chi
關鍵字: energy crops;能源作物;biodiesel;生質柴油
出版社: 應用經濟學系所
引用: 參考文獻 網站部份: 工業技術研究院能源與資源研究所,2004年,氣候變化綱要公約資訊網站,「Online」 http://sd.erl.itri.org.tw/fccc/index.htm。 美國黃豆協會台灣辦事處,1970年,「Online」http://www.soybean.org.tw/asa.htm。 行政院農業委員會,2004年,農業貿易統計要覽。 行政院農業委員會,2004年,農業統計年報。 行政院農業委員會,2004年,糧食供需年報。 行政院農業委員會,2004年,台灣地區農產品批發市場年報。 行政院農業委員會,2004年,台灣農產品生產成本調查報告。 中文部份: 工業技術研究院,民國89年,溫室效應氣體減量技術推廣與輔導計劃報告。 林立夫、郭民朝、楊盛行與陳建源,2006年,生質能開發與利用,生質能發展研討會。 林勳生,1980年,油菜,p464-468,台灣農家要覽(上),豐年出版社,台北。 詹國連,1980年,大豆,p412-420,台灣農家要覽(上),豐年出版社,台北。 吳俊賢、林俊成、李國忠、魏名聰,2001年4月,「栽種生質能源作物可增加再生能源使用與減緩溫室效應」,台灣林業,第27卷第2期,第7-14頁。 吳耿東、李宏台,2002年11月,「生質物發電利用技術現況與發展」,台電工程月刊,第651期,第77-95頁。 吳耿東、李宏台,2004年11月,「生質能源-化腐朽為能源」,科學發展,383期,第20-27頁。 周桂蘭、吳振諧、張村品、吳榮華與李宏台,2001年,「綠色能源–生質柴油國際發展現況」,能源季刊,第31卷第1期,頁99-108。 陳吉仲、張靜貞、李恆綺、顏宏德,2005年,「台灣稻米政策調整對稻米市場經濟影響之評估」,農業經濟叢刊,第十期,第163-198頁。 陳威呈,2004年,「台灣種植能源作物作為發電燃料的可行性分析」,碩士論文,國立中興大學應用經濟研究所。 陳介武,2005年,「防制空氣污染面面觀-全球採用生質柴油空氣清潔而保健康」,美國黃豆協會在台分會。 黃宗煌、黃瀕儀,2003年,「推廣能源作物生產的問題與政策調和」,國立清華大學永續發展研究室。 黃宗煌、黃瀕儀,2005年5月,「稻田轉種能源作物生產生物能源的評估與政策整合」,水稻田農業多樣性機能研討會。 張靜貞,1993年,「數學規劃在農業部門模型的應用」,台灣土地金融季刊,第30卷第4期,第35-50頁。 張靜貞、孫金華、徐世勳、陳吉仲,2005年,新國際經貿與區域整合環境下對台灣農漁業的產業結構調整政策分析,行政院農業委員會九十四年度科技研究計畫研究報告。 魏國棟,2002年,氣候變遷與因應經濟政策工具,國立台北大學經濟學系。 經濟部研究發展委員會,國內外經濟情勢分析,2004年。 英文部分 Baranzini, Andrea, Jose´ Goldemberg and Stefan Speck, 2000. “A future for Carbon Taxes”, Ecological Economics 32, pp.395-412 Bender, Martin, 1999, “Economic feasibility review for community-scale farmer cooperatives for biodiesel”, Bioresource Technology 70, pp.81-87. Biodiesel News, National Biodiesel Board, U.S.A., 2005. Cole, S., J. V. Rao and P. Venkatacharyulu, 1995. “Thermoacoustic properties of methyl esters of n-alkanoic acids”, Journal of the American Oil Chemists’Society, 72(6), pp.687-691 Dendoncker, Nicolas, Bas Van Wesemael, Mark D.A. Rounsevell, Caroline Roelandt and Suzanna Lettens, 2004. “Belgium’s CO2 mitigation potential under improved cropland management”, Agriculture, Ecosystems and Environment 103 , pp.101–116 Duloy, John H. and R.D. Norton, 1975. “Price and Incomes in Linear Programming Models”, American Journal of Agricultural Economics 57, pp.591-600 European Biodiesel Board, EBB, 2005 (www.ebb-eu.org/stats.php) Fortenbery, T. Randall, 2005. “Biodiesel Feasibility Study: An Evaluation of Biodiesel Feasibility in Wisconsin”, University of Wisconsin-Madison Department of Agricultural & Applied Economics. Freibauer, Annette, Mark D.A.. Rounsevell, Pete Smith and Jan Verhagen, 2004. “Carbon sequestration in the agricultural soils of Europe”, Geoderma 122, pp.1-23 Gerpen, J. V. 2005. “Biodiesel processing and production”, Fuel Processing Technology, 86, pp.1097-1107 Glaser, L., C. Plummer, S. Pyles, I. Ahmed, A. Raneses, J. Duffield, L. Watson, and C.Chase, 1996. “Crambe, industrial rapeseed, and tung provide valuable oils. In: Industrial Uses of Agricultural Materials Situation and Outlook Report, report IUS-6”, U.S. Department of Agriculture, Economic Research Service, Washington, DC, pp. 17–23. Goulder, L. 1995. “Effect of Carbon Taxes in an Economy with Problems:How The Patient Followed The Doctor’s Orders,”The Journal of Economic Perspectives, 3, pp.95-144 Jefferson, M. 1996. “Global prospects for renewable energy”, WREC, pp1-5 Kline, D., T. Hargove, and C. Vanderlan 1998. “The Treatment of Biomass Fuels in Carbon Emission Trading Systems”, Prepared for the Center for Clean Air Policy’s Greenhouse Gas Emissions Trading Braintrust. McCarl, B.A. and H.T. Spreen, 1980. “Price Endogenous Mathematical Programming as a Tool for Sector Analysis”, American Journal of Agricultural Economics, 62(1), pp.87-102 Mittelbach, M. and P.Tritthart, 1988. “Diesel fuel derived from vegetable oils, Ⅲ. Emission tests using methyl esters of used frying oil”, Journal of the American Oil Chemists’Society, 65(7), pp.1185-1187 Mittelbach, M., 1998. A European perspective on quality biodiesel. In: Peterson, C. L.(Ed.), Commercialization of Biodiesel: Producing a Quality Fuel, Conference Proceedings, July 1997, Boise, ID. University of Idaho,Moscow, ID, pp. 125–131. Raneses, A.R., L.K.Glaser, J.M. Price and J.A. Duffield, 1999. “Potential biodiesel markets and their economic effects on the agricultural sector of the United States”, Industrial Crops and Products 9, pp.151-162. Ryan, Lisa, Frank Convery and Susana Ferreira, 2005. “Stimulating the use of biofuels in the European Union:Implications for climate change policy”, Energy Policy Samuelson, P.A., 1952. “Spatial Price Equilibrium and Linear Programming”,The American Economic Review 42, pp.283-303 Sarma, A.K., D. Konmer and P. K. Bordoloi, 2005. A comprehensive analysis of fuel properties of biodiesel from Koroch seed oil. Energy Fuels, 19, pp.656-657 Schumacher, L.G., S.Howell and J.A.Weber, 1996. Biodiesel research—1996 and beyond. In: Cundiff, J.S., Gavett, E.E., Hansen, C., Peterson, C., Sanderson, M.A., Shapouri, H.,Van Dyne, D.A. (Eds.), Liquid Fuels and Industrial Products from Renewable Resources, Proceedings of the Third Liquid Fuel Conference, September 1996, Nashville, TN. American Society of Agricultural Engineers, St. Joseph, MI, pp. 217–223. Smith, Pete, 2004. “Carbon sequestration in croplands: the potential in Europe and the global context”, European Journal of Agronomy 20, pp.229-236 Takayama, T. and G.G. Judge, 1964. “Equilibrium Among Spatially Separated Markets:A Reformulation”, Econometrica 32, pp.510-524 University of Idaho, 1996. “Development of Rapeseed Biodiesel for Use in High-Speed Diesel Engines, report 302”, University of Idaho, College of Agriculture, Moscow, ID. Walton, J., 1938. Gas and Oil Power. Whitehall Press, London. Weber, J.A. and K. Johannes, 1996. Biodiesel market opportunities and potential barriers. In: Cundiff, J.S., Gavett, E.E., Hansen, C., Peterson, C., Sanderson, M.A.,Shapouri, H., Van Dyne, D.A. (Eds.), Liquid Fuels and Industrial Products from Renewable Resources, Proceedings of the Third Liquid Fuel Conference, September 1996, Nashville,TN. American Society of Agricultural Engineers, St. Joseph, MI, pp.350–357. Weber, J.A., 1993. The Economic Feasibility of Community-based Biodiesel Plants. Masters thesis. University of Missouri, Columbia.
摘要: 
隨著科技持續的進步,人類消耗了愈來愈多的能源,排放了愈來愈多的二氧化碳,也使得全球暖化的現象愈來愈嚴重。為了抑制此現象的持續惡化,世界上一些國家於1997年簽訂了京都議定書來規範合理的溫室氣體排放量。我國並非此協議書的締約國之一,不過近年來的二氧化碳排放量卻一直是居高不下,基於地球是全人類所共有的,因此我們應該要有維護地球生態的責任。由於石化能源的使用會產生許多的溫室氣體,且總有用盡的一天,為了要減少溫室氣體的排放,勢必要開發能替代石化能源的再生能源以供使用,如太陽能、風能、潮汐能以及生質能等。而目前歐美各國所積極開發的便是生質能,主因為可以從各種的能源作物來獲得所需能源,並有效減少溫室氣體的排放。
台灣在加入世界貿易組織之後,由於農作物生產成本較高,使得農產品相對的較不具競爭力,因此近年來政府不斷地鼓勵農民參與休耕、種植綠肥並給予補貼,使得農作物的種植面積是日漸減少,用作休耕以及種植綠肥用的面積則是日益增多,至2005年為止總計全台已有276,900公頃的農地是參與休耕、種植綠肥的。基於以上種種現況,本研究將使用國內學者所建立的台灣農業部門模型,並在其中加入種植能源作物此一變數,模擬運用台灣現有的休耕地來種植能源作物以提煉生質柴油來替代某一比例的柴油需求量時,將能為溫室氣體減量帶來多少貢獻,以及模擬其他相關可能結果。
依據本研究所作的模擬,可得出以下的結果。若種植大豆、向日葵以及油菜能源作物以提煉生質柴油來取代百分之二的傳統柴油需求量,則這三種能源作物,其所需農地面積分別為163.88千公頃、135.28千公頃以及144.59千公頃。農民收入則分別是每公頃81,591.02元、79,008.71元以及74,048.8元。可增加的勞動力百分比分別為6.55%、8.84%以及2.75%。所能減少的二氧化碳排放量則分別為324千公噸、406千公噸以及399千公噸。而生質柴油的價格分別為每公升50.67元、38.11元以及39.08元。

As technology continues to progress, the mankind spends more and more energy, and exhausts more and more carbon dioxide. It also makes the global warming effect getting worse and worse. In order to restrain this phonomeon, some of the countries in 1997 signed the “Kyoto Protocol” to stipulate the reasonable carbon dioxide emission. Taiwan is not the member of the “Kyoto Protocol”. But in the recent years, our country is continuing to exhaust more and more carbon dioxide. Because the earth belongs to all humanity, we should have the responsibility to protect the ecological environment of the earth. The usage of fossil fuel will exhaust many greenhouse gases, and one day we will deplete it. In order to reduce the emission of greenhouse gases, we must explicit the renewable energy that can substitute fossil fuel to use, like solar power, tidal current, wind power and biomass. And the one that the American and European countries develop it actively is biomass. Because it can be obtained from many kind of energy crops, and can reduce the emission of greenhouse gases efficiently.

The production cost of crops is higher than other countries, and it makes the crops become less competitive after Taiwan joining the World Trade Organization. Hence, in the recent years, the government continues to encourage the farmers to participate in zero tillage or growing green manure crops, and gives subsidies to them. It makes the measure of area for growing crops is getting less and less. The measure of area for growing green manure crops is getting more and more. Until 2005, there are 276,900 hectare of crops lands that is zero tillage or growing green manure crops in Taiwan. According to these situations, this research will use the Taiwan Agricultural Sector Model developed by domestic scholars, and will put the variable of energy crops in this model. It is going to simulate that if we grow energy crops in Taiwan to refine biodiesel to substitute some percent of the diesel demand. How many greenhouse gases will be reduced? And some other related results will be simulated.

We can get these results after simulating it. If we grow soybean, sunflower and rape to refine biodiesel to substitute two percent of the diesel demand. These three kinds of energy crops will need 163.88 thousand hectare, 135.28 thousand hectare and 144.59 thousand hectare crops lands to grow. Farmer's revenue will be NT$ 81,591.02 per hectare, NT$ 79,008.71 per hectare and NT$ 74,048.8 per hectare. The labor force can increase 6.55 percent, 8.84percent and 2.75 percent. The carbon dioxide that can be reduced is 324 thousand tones, 406 thousands tones and 399 thousands tones. The price of biodiesel is NT$ 50.67 per liter, NT$ 38.11 per liter and NT$ 39.08 per liter.
URI: http://hdl.handle.net/11455/27386
其他識別: U0005-0908200615222000
Appears in Collections:應用經濟學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.