Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2774
標題: LED封裝與散熱模組熱傳特性分析
Analysis of Heat Transfer Characteristics for LED Module
作者: 鍾濟鴻
Chung, Chi-Hung
關鍵字: LED;LED;散熱模組;熱阻量測;擴散熱阻;heat dissipation module;thermal resistance measurement;spreading resistance
出版社: 機械工程學系所
引用: [1] Narendran, N., Gu, Y., Freyssinier, J. P., Yu, H., & Deng, L. (2004). Solid-state lighting: failure analysis of white LEDs. Journal of Crystal Growth, 268(3), 449-456. [2] Chhajed, S., Xi, Y., Li, Y. L., Gessmann, T., & Schubert, E. F. (2005). Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes. Journal of Applied Physics, 97(5), 054506-054506. [3] Tran, C. A., Chu, C. F., Cheng, C. C., Liu, W. H., Chu, J. Y., Cheng, H. C., ... & Doan, T. (2007). High brightness GaN vertical light emitting diodes on metal alloyed substrate for general lighting application. Journal of crystal growth, 298, 722-724. [4] Wu, H. H., Lin, K. H., & Lin, S. T. (2012). A study on the heat dissipation of high power multi-chip COB LEDs. Microelectronics Journal, 43(4), 280-287. [5] Christensen, A., & Graham, S. (2009). Thermal effects in packaging high power light emitting diode arrays. Applied Thermal Engineering, 29(2), 364-371. [6] Kim, H. H., Choi, S. H., Shin, S. H., Lee, Y. K., Choi, S. M., & Yi, S. (2008). Thermal transient characteristics of die attach in high power LED PKG. Microelectronics Reliability, 48(3), 445-454. [7] Horng, R. H., Hong, J. S., Tsai, Y. L., Wuu, D. S., Chen, C. M., & Chen, C. J. (2010). Optimized thermal management from a chip to a heat sink for high-power GaN-based light-emitting diodes. Electron Devices, IEEE Transactions on, 57(9), 2203-2207. [8] Hu, J., Yang, L., Hwang, W. J., & Shin, M. W. (2006). Thermal and mechanical analysis of delamination in GaN-based light-emitting diode packages. Journal of Crystal Growth, 288(1), 157-161. [9] Liou, B. H., Chen, C. M., Horng, R. H., Chiang, Y. C., & Wuu, D. S. (2012). Improvement of thermal management of high-power GaN-based light-emitting diodes. Microelectronics Reliability, 52(5), 861-865. [10] Horng, R. H., Lin, R. C., Chiang, Y. C., Chuang, B. H., Hu, H. L., & Hsu, C. P. (2012). Failure modes and effects analysis for high-power GaN-based light-emitting diodes package technology. Microelectronics Reliability, 52(5), 818-821. [11] Weng, C. J. (2009). Advanced thermal enhancement and management of LED packages. International Communications in Heat and Mass Transfer, 36(3), 245-248. [12] Yin, L., Yang, L., Yang, W., Guo, Y., Ma, K., Li, S., & Zhang, J. (2010). Thermal design and analysis of multi-chip LED module with ceramic substrate. Solid-State Electronics, 54(12), 1520-1524. [13] Yang, L., Jang, S., Hwang, W., & Shin, M. (2007). Thermal analysis of high power GaN-based LEDs with ceramic package. Thermochimica acta, 455(1), 95-99. [14] Ma, M., Liu, Z., & Li, Y. (2011, August). Thermal performance of high power LED package based on LTCC. Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference on (pp. 1-4). IEEE. [15] Heo, Y. J., Kim, H. T., Kim, K. J., Nahm, S., Yoon, Y. J., & Kim, J. (2012). Enhanced heat transfer by room temperature deposition of AlN film on aluminum for a light emitting diode package. Applied Thermal Engineering, 50(1), 799-804. [16] Muzychka, Y. S., Culham, J. R., & Yovanovich, M. M. (2003). Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels. Journal of Electronic Packaging, 125(2), 178-185. [17] Lasance, C. J. (2010). How to estimate heat spreading effects in practice. Journal of Electronic Packaging, 132(3), 031004-1. [18] Chen, Y. S., Chien, K. H., Wang, C. C., Hung, T. C., Ferng, Y. M., & Pei, B. S. (2007). Investigations of the thermal spreading effects of rectangular conduction plates and vapor chamber. Journal of electronic packaging, 129(3), 348-355. [19] Chen, Y. S., Chien, K. H., Tseng, Y. S., & Chan, Y. K. (2009). Determination of Optimized Rectangular Spreader Thickness for Lower Thermal Spreading Resistance. Journal of electronic packaging, 131(1), 011004-1. [20] Yang, C. T., Liu, W. C., & Liu, C. Y. (2012). Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package. Microelectronics Reliability, 52(5), 855-860. [21] Bhattacharya, A., & Mahajan, R. L. (2006). Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy-induced convection. Journal of electronic packaging, 128(3), 259-266. [22] Phanikumar, M. S., & Mahajan, R. L. (2002). Non-Darcy natural convection in high porosity metal foams. International Journal of Heat and Mass Transfer, 45(18), 3781-3793. [23] Hsieh, W. H., Wu, J. Y., Shih, W. H., & Chiu, W. C. (2004). Experimental investigation of heat-transfer characteristics of aluminum-foam heat sinks. International Journal of Heat and Mass Transfer, 47(23), 5149-5157. [24] Qu, Z., Wang, T., Tao, W., & Lu, T. (2012). Experimental study of air natural convection on metallic foam-sintered plate. International Journal of Heat and Fluid Flow, 38, 126-132. [25] Incropera, F. P., Lavine, A. S., & DeWitt, D. P. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons Incorporated. [26] JESD51-14.Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction to Case of Semiconductor Devices with Heat Flow through a Single Path. November 2010. http://www.jedec.org/sites/default/files/docs/JESD51-14_1.pdf. [27] http://www.ledinside.com.tw/
摘要: 
本研究針對LED散熱模組進行系統性地探討,從封裝層中的晶粒、固晶材料與散熱基板再到散熱模組之設計,並針對LED因熱集中導致擴散熱阻提升的現象進行深入分析與討論。散熱模組以發泡金屬作為鰭片材料,並搭配銅鰭片,總共設計六種散熱模組進行散熱性能的研究與分析。實驗結果得知材料間的接合製程技術的穩定性對於LED封裝的散熱性能影響極為重要,而散熱基板是封裝層中最能改進的部分,包含材料選取與厚度設計皆能有效地降低熱阻。本研究實驗結果顯示,散熱模組仍舊是LED散熱較大的瓶頸。以本研究中測試的銅鰭片散熱模組為例,散熱模組佔整體系統熱阻的55%。而將傳統實心銅鰭片改良成發泡碳鰭片設計可降低約20%之熱阻,並且能大幅度減輕散熱模組的重量,研究結果顯示應用發泡碳材料在LED散熱模組設計上極具可行性。

A study to the characteristics of heat transfer in high power LED modules were carried out systematically based on experimental results for a variety of LED packaging, heat spreaders and heat dissipation modules. The flip chip type LED has less thermal resistance than the lateral type LED. It is also found that the interface thermal resistance resulted from defects in the packaging affects the overall heat transfer in the LED module significantly. Furthermore, the spreading resistance effect corresponding to a LED module operating at different power levels is discussed. It is concluded that the magnitude of heat flux from the heat source and the thickness of the substrate are both very important to the spreading resistance of LED modules. Based on the experimental results, the most critical component to heat transfer in a LED system is determined to be the heat dissipation module (fin). Among those fin types being investigated, heat dissipation module with graphite foam yields the greatest performance due to its light weight and low heat transfer resistances. Recommendations for the design of heat transfer modules of LED system are provided based on this study.
URI: http://hdl.handle.net/11455/2774
其他識別: U0005-2208201320441900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.