Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2780
標題: 一個四床吸附式熱泵之性能改良
Performance improvement of a four-bed adsorption heat pump
作者: 蔡阜剛
Tsai, Fu-Kang
關鍵字: 吸附式熱泵;adsorption heat pump;矽膠;冷卻能力;冷卻性能係數;鰭管;silica gel;specific cooling power;COP;finned tube
出版社: 機械工程學系所
引用: [1]R.J.H. Grisel, S.F. Smeding, R.d. Boer, “Waste heat driven silica gel/water adsorption cooling in trigeneration”, Applied Thermal Engineering, Vol. 30, pp. 1039–1046, 2010. [2]M. Kubota, T. Ueda, R. Fujisawa, J. Kobayashi, Fujio Watanabe, Noriyuki Kobayashi, Masanobu Hasatani, “Cooling output performance of a prototype adsorption heat pump with fin-type silica gel tube module”, Applied Thermal Engineering, Vol. 28, pp. 87-93, 2008. [3]A. Freni, F. Russo, S. Vasta, M. Tokarev, Y.I. Aristov, G. Restuccia, “An advanced solid sorption chiller using SWS-1L”, Applied Thermal Engineering, Vol. 27, pp. 2200-2204, 2007. [4]T. Nunez, W. Mittelbach, H.M. Henning, “Development of an adsorption chiller and heat pump for domestic heating and air-conditioning applications”, Applied Thermal Engineering, Vol. 27, pp. 2205-2212, 2007. [5]Y. Hirota, Y. Sugiyama, M. Kubota, F. Watanabe, N. Kobayashi, M. Hasatani, M. Kanamori, “Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump”, Applied Thermal Engineering, Vol. 28, pp. 1687–1693, 2008. [6]X. Wang, H.T. Chua, K.C. Ng, “Experimental investigation of silica gel-water adsorption chillers with and without a passive heat recovery scheme”, International Journal of Refrigeration, Vol. 28, pp. 756-765, 2005. [7]D.C. Wang, J.Y. Wu, Z.Z. Xia, H. Zhai, R.Z. Wang, W.D. Dou, “Study of a novel silica gel–water adsorption Chiller.Part II. Experimental study”, International Journal of Refrigeration, Vol. 28, pp 1084-1091, 2005. [8]Z. Xia, D. Wang, J. Zhang, “Experimental study on improved two-bed silica gel–water adsorption chiller”, Energy Conversion and Management, Vol. 49, pp. 1469-1479, 2008. [9]R.Z. Wang, “Efficient adsorption refrigerators integrated with heat pipes”, Applied Thermal Engineering, Vol. 28, pp. 317-326, 2008. [10]K. Daou, R.Z. Wang, G.Z. Yang, Z.Z Xia, “Theoretical comparison of the refrigerating performances of a impregnated composite adsorbent to those of the host silica gel”, International Journal of Thermal Sciences, Vol. 47, pp. 68-75, 2008. [11]H. Niazmand, H. Talebian, M. Mahdavikhah, “Bed geometrical specifications effects on the perdormance of silica/water adsorbtion chillers”, International Journal of Refrigeration, Vol. 35, pp. 2261-2274, 2012. [12]M. Mahdavikhah, H. Niazmand, “Effects of plate finned heat exchanger parameters on the adsorption chiller performance”, Applied Thermal Engineering, Vol. 50, pp. 939-949, 2013. [13]J.Y. San, “Analysis of the performance of a multi-bed adsorption heat pump using a solid-side resistance model”, Applied Thermal Engineering, Vol. 26, pp. 2219-2227, 2006. [14]J.Y. San, W.M. Lin, “Comparison among three adsorption pairs for using as the working substances in a multi-bed adsorption heat pump”, Applied Thermal Engineering, Vol.28, pp. 988–997, 2008. [15]J.Y. San, H.C. Hsu, “Performance of a multi-bed adsorption heat pump using SWS-1L composite adsorbent and water as the working pair”, Applied Thermal Engineering, Vol. 29, pp. 1606-1613, 2009. [16]W.S. Loh, I.I. El-Sharkawy, K.C. Ng, B.B. Saha, “Adsorption cooling cycles for alternative adsorbent/adsorbate pairs working at partial vacuum and pressurized conditions”, Applied Thermal Engineering, Vol. 29, pp. 793–798, 2009. [17]T. Miyazaki, A. Akisawa, “The influence of heat exchanger parameters on the optimum cycle time of adsorption chillers”, Applied Thermal Engineering, Vol. 29, pp. 2708–2717, 2009. [18]B.N. Okunev, A.P Gromov, V.L. Zelenko, I.S. Glaznev, D.S. Ovoshchnikov, L.I Heifets, “Effect of residual gas on the dynamics of water adsorption under isobaric stages of adsorption heat pump : Mathematical modeling”, International Journal of Heat and Mass Transfer, Vol. 53, pp. 1283-1289, 2010. [19]L.G. Gordeeva, A. Grekova, T. Krieger, Yu.I. Aristov, “Composites binary salts in porous matrix for adsorption heat transformation”, Applied Thermal Engineering, Vol. 50, pp. 1633-1638, 2013. [20]L.G. Gordeeva, Yu.I. Aristov, “Composites binary salts in porous matrix for adsorption heat transformation: a current state-of-the-art and new trends”, International Journal of Low-Carbon Technologies, Vol. 7, pp. 288-302, 2012. [21]S.J Kline, F.A. McClintock, “Describing uncertainties in single-sample experiments”, Mechanical Engineering, Vol. 75, pp. 3-8, 1953. [22]林俊宏,一個多床吸附式熱泵在非等模式操作時間下之性能,碩士論文,中興大學機械系,2008. [23]林永宸,一個具四個吸附器之吸附式熱泵之分析與測試,碩士論文,中興大學機械系,2009. [24]鄭鼎偉,蒸發器內冷媒之循環對一個吸附式熱泵之冷卻性能之影響,碩士論文,中興大學機械系,2012. [25]W.F. Stoecker, J.W. Jones, Refrigeration & Air Conditioning, Chapter 12&17, McGraw-Hill, 1982.
摘要: 
此研究主要對於本實驗室內一個具有四個鰭管式吸附器之吸附式熱泵進行改良,並實驗量測系統之冷卻能力(SCP)與冷卻性能係數(COP)。研究中矽膠與水分別為吸附劑與冷媒。實驗之結果顯示,在 與冰水流量=1.2 L/min之操作條件下,可得系統之最大SCP值為98.4 W/kg-silica gel,所對應之COP值為0.28,而此最佳之週期時間為10分鐘;在 與冰水流量= 2.1 L/min之操作條件下,可得系統之最大SCP值為94.6 W/kg-silica gel,所對應之COP值為0.31,而此最佳之週期時間為11分鐘;在 與冰水流量= 2.1 L/min之操作條件下,可得系統之最大SCP值為76.3 W/kg-silica gel,所對應之COP值為0.35,而此最佳之週期時間為15分鐘;實驗之結果亦顯示,COP之值會因週期操作時間之增加而提高,在 與冰水流量= 2.1 L/min之操作條件下當週期時間為39分鐘時,系統之COP值為0.57,而所對應之SCP值為70.0 W/kg-silica gel。在實驗過程中亦發現,蒸發器中冷媒蒸氣(水蒸氣)之產生量可能不足,同時冷媒蒸氣之傳遞也可能受到阻礙,此導致熱泵系統之性能受到限制。
URI: http://hdl.handle.net/11455/2780
其他識別: U0005-0508201314560800
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.