Please use this identifier to cite or link to this item:
標題: 以全像光學元件與空間頻率為基礎之立體量測系統
Stereoscopic measuring system based on the holographic optical element and spatial frequency
作者: 龍俊霖
Lung, Chun-Lin
關鍵字: Kinect;Kinect;全像光學元件;自由曲面;二元光學;空間頻率;雷射散斑;holographic optical element (HOE);free-form surface;binary optics;spatial frequency;laser speckle
出版社: 機械工程學系所
引用: [1] 黃韋閔, “應用於Kinect立體感測器之新式投影元件設計”, 國立中興大學機械工程學系碩士論文, 2012 [2] Z. J. Geng, “Structured-light 3D surface imaging : a tutorial”, IEEE Intelligent Transportation System Society, 2011 [3] M. D. Altschuler, J. L. Posdamer, and G. Frieder, “The numerical stereo camera”, Proceedings of SPIE-Three-Dimensional Machine Perception, vol.0283, p.15, 1981 [4] R. Furukawa, and H. Kawasaki, “Uncalibrated multiple image stereo system with arbitrarily movable camera and projector for wide range scanning”, IEEE Conference on 3-D Digital Imaging and Modeling, 2005 [5] R. Yang, S. Cheng, W. Yang, and Y. Chen, “Robust and accurate surface measurement using structured light”, IEEE Transactions on Instrumentation and Measurement, Vol.57, No.6, 2008 [6] P. S. Huang, Q. Hu, F.Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring”, Optical Engineering, vol.38, No.6, p.1065–1071, 1999 [7] W. Liu, Z. Wang, G. Mu, and Z. Fang, “Color-coded projection grating method for shape measurement with a single exposure”, Applied Optical, vol.39, No.20, p.3504–3508, 2000 [8] P. Lavoie, D. Ionescu, and E. M. Petriu, “3-D Object model recovery from 2-D Images using structured light”, IEEE Transactions on Instrumentation and Measurement, Vol.53, No.2, 2004 [9] A. Shpunt, and Z. Zalevsky, “Depth-varying light fields for three dimensional sensing”, United States Patent 20080106746, 2008 [10] A. Shpunt, “Depth mapping using multi-beam illumination”, United States Patent 20100020078, 2010 [11] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping using projected patterns”, United States Patent 20100118123, 2010 [12] B. Freedman, A. Shpunt, and Y. Arieli, “Distance-varying illumination and imaging techniques for depth mapping”, United States Patent 20100290698, 2010 [13] A. Shpunt, and B. Pesach, “Optical pattern projection”, United States Patent 20100284082, 2010 [14] Z. Zalevsky, A. Shpunt, A. Maizels, and J. Garcia, “Method and system for object reconstruction”, United States Patent 20100177164, 2010 [15] Microsoft Kinect for windows, [16] 李紅波, 丁林建, 冉光勇, “基於Kinect深度圖像的人體識別分析”, China Academic Jounal Electronic Publishing House, vol.3969, 2012 [17] G. Sansoni, L. Biancardi, U. Minoni, and F. Docchio, “A novel, adaptive system for 3-D optical profilometry using a liquid crystal light projector”, IEEE Transactions on Instrumentation and Measurement, v 43, No.4, p.558-566, 1994 [18] M. Noguchi, and S. K. Nayar, “Microscopic shape from focus using active illumination”, IEEE Computer Vision, 1994 [19] H. F. Shih, “Optical head with two wavelengths in single path using holographic optical element”, Japanese Journal of Applied Physics, vol.44, No.4, p.1797-1802, 2005 [20] H. F. Shih, C. L. Chang, K. J. Lee, and C. S. Chang “Design of optical head with holographic optical element for small form factor drive systems”, IEEE Transactions on Magnetics, vol. 41, No 2, p.1058-1060, 2005 [21] H. F. Shih, Y. Chiu, S. Cheng, Y. C. Lee, C. S. Lu, Y. C. Chen, and J. C. Chiou, “Prism-type holographic optical element design and verification for the blue-light small-form-factor optical pickup head”, Applied Optical, vol.51, No.24, p.5758–5766, 2012 [22] 暱圖網-素材設計共享平台, [23] Microsoft Developer Network, [24] OpenKinect, [25] 吳國斌, 李斌, 閻驥洲, “Kinect人機交互開發實踐”, 人民郵電出版社, 2013 [26] 王森, “Kinect體感程式設計入門”, 碁峯資訊股份有限公司, 2013 [27] 劉超群, “Kinect體感程式探索-使用C#”, 松崗資產管理股份有限公司, 2013 [28] 羅正忠, 李嘉平, 鄭湘原, “半導體工程-先進製程與模擬”, 台灣培生教育出版股份有限公司, 2002 [29] J. N. Butters, and J. A. Leendertz, “A double exposure technique for speckle pattern interferometry”, Journal of Physics E: Scientific Instruments, vol.4, 1971 [30] 安毓英, 曾小東, “光學感測與測量”, 五南出版社, 2004
本研究應用全像光學元件(holographic optical element , HOE)取代Kinect立體感測器之二維繞射光學元件(diffractive optical element,DOE),以獲致均勻的投影光場,並利用雷射斑點分佈之空間頻率(spatial frequency)隨著物體深度而改變之特性,提出創新之立體量測系統架構。相較於商用之Kinect立體感測器採用二維繞射光學元件投射出呈畸變之光場而言,全像光學元件因具有二元化(binarization)與自由曲面(free-form surface)之特性,故本系統可以依據量測之標的設計出所需之任意形式的均勻投影光場分佈。
首先,我們將全像光學元件劃分成9個區域,利用光學設計軟體對每一區域之相位多項式係數進行優化,以得到均勻之光場投影與像差修正。接著,透過曲線擬合(curve fitting)取得全像光學元件之光罩設計圖案,進而以微影(photolithography)與蝕刻(etching)製程技術完成元件之製作。進一步我們將製作完成之全像光學元件與散斑光學元件結合,搭配波長為808 nm之紅外線雷射光源進行實驗,得到與光學模擬結果一致之投影光場分佈。最後,將散斑投影影像以快速傅立葉轉換(fast Fourier transform,FFT)取得空間頻譜分佈,驗證其隨著量測物體之深度位置而改變的特性,推算出深度量測之解析度至少可到達3.3 cm,實現本創新立體量測系統之構想。

This study replaces the two-dimensional diffractive optical element (DOE) of the Kinect stereoscopic sensor with the holographic optical element (HOE) for achieving the optical projection with uniform distribution and uses the dependence of object depth on the spatial frequencies of laser speckle distribution to propose a novel stereoscopic measuring system configuration. In comparison with the commercial Kinect stereoscopic sensor which adopts the two-dimensional DOE and generates a distorted optical projection, this system can provide uniform optical projection according to the measuring target of specific distribution with the HOE features of binarization and free-form surface.
First, the HOE was divided into nine divisions. The optical design software was used to the optimization of the coefficients of the phase polynomial in each division for obtaining the uniform optical projection and aberration correction. The curve-fitting was then adopted to generate the photo mask pattern design. The photolithography and etching technologies of processes were applied to the device fabrication. Furthermore, the fabricated HOE was combined with the optical speckle component. It was verified by using the infrared laser light source of wavelength 808 nm to realize the optical projection in accordance with the distribution of the optical simulation result. Finally, the projected image with speckles was converted by the fast Fourier transform (FFT) to get the spatial frequency distribution. The results show that the distribution will be corresponsive to the change of object depth. The measuring accuracy can be at least less than 3.3 cm. It demonstrates the concept of the novel stereoscopic measuring system.
其他識別: U0005-1908201314345200
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.