Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/27881
標題: 資料挖掘整合規則推論方法應用於不動產價格評估模式之研究
A Study on the Application of Data Mining Integrated Rule Induction Method to the Evaluation Model of Real Estate Price
作者: 廖文正
Liao, Wuen-Zheng
關鍵字: Rough Set Theory;粗糙集理論;Fuzzy Logic Approach;Real Estate Appraisal;模糊邏輯方法;不動產估價
出版社: 應用經濟學系所
引用: 中文部分 1. 內政部地政司(2006),中華民國主要都市地區房地產交易價格簡訊(網址:http://www.land.moi.gov.tw/chhtml/index.asp)。 2. 行政院主計處(1994),台灣地區住宅狀況調查報告。 3. 李泳龍、葉光毅、徐國城(2001),公告土地現值評價作業改進之研究—數量化Ι類之應用,第二屆地政學術研討會。 4. 李天岩(2002),熵(Entropy) (原載於「數學傳播」第十三卷第三期) ,網址:http://episte.math.ntu.edu.tw/articles/mm/mm_13_3_01/index.html,台大數學系。 5. 肖智、劉敏、馮祈善、張志恆(2002),一種人力資源價值的粗糙集評價方法,重慶大學學報,25(11): 140-143。 6. 林森田(1991),地方公共設施效益資本化之研究,雅典出版社出版。 7. 林英彥(2003),不動產估價概要,文笙書局出版。 8. 林英彥、陳奉瑤(1998),建立標準宗地制度之研究,內政部委託研究報告。 9. 吳耿東(2003),不動產投資分析,文笙書局。 10. 卓輝華(1999),國內不動產估價市場比較法之應用與限制,鑑定論壇,2: 16-20。 11. 卓輝華(2001),不動產估價實務與理論,宏大不動產鑑定顧問公司。 12. 洪得洋、林祖嘉(1999),台北市捷運系統與道路寬度對房屋價格影響之研究,住宅學報,8: 47-67。 13. 馬若薇(2005),基於粗糙集與信息熵的上市公司財務困境預警指標的確立,當代經濟科學,27(2): 45-50。 14. 陳斌山(2004),我國現行不動產估價之研究,現代地政,278: 53-60。 15. 連經宇、陳彥仲(1999),模糊語意變數法應用於住宅消費決策行為之初探研究,住宅學報,8: 69-90。 16. 財團法人台灣不動產資訊中心(2005),電腦大量估價實證模式建構,中美經濟社會發展基金計畫編號:79-1-356-3-k4002-03。 17. 梁仁旭(1999),標準宗地制標準地設置之探討,土地估價與土地利用學術研討會,中華民國土地估價學會。 18. 馮正民、邱裕鈞(2003),研究分析方法,建都文化公司出版。 19. 黃美娟(2005),電腦輔助土地大量估價方法,土地問題研究季刊,4(1): 125-135。 20. 黃淑惠(2003),無母數迴歸對不動產估價之應用,台灣土地金融季刊,40(2): 1-21。 21. 彭金堂(2004),分析電業自由化市場競爭機制與配電事故診斷資料挖礦之研究,國立清華大學工業工程與工業管理系博士論文。 22. 鄒克萬、張秀玲與張曜麟(2002),整合空間統計技術之土地大量估價方法之研究,都市與計畫,29(3): 395-420。 23. 張文修、仇國芳(2005),基於粗糙集的不確定決策,清華大學出版社,北京。 24. 張金鶚、范垂爐(1993),房地產真實交易價格之研究,住宅學報,1:75-91。 25. 張欣民、陳奉瑤(2003),自動估價系統算不算是估價,土地問題研究季刊,2(2): 72-77。 26. 張梅英(1992),建立土地大量估價方法之研究,國立政治大學地政研究所博士論文。 27. 張梅英、施昱年(2004),台灣大量估價問題分析及其改進方法,土地問題研究月刊,3(3): 89-105。 28. 楊依蓁(2006),應用自動估價模型之探討,土地問題研究季刊,5(1): 115-122。 29. 楊宗憲、彭建文(2006),影響自動估價系統與不動產估價師關係之因素分析,全國不動產經營與管理實務學術研討會,國立屏東商業技術學院不動產經營系,2006年5月6日。 30. 楊龍士、江宛瑛(1993),影響居住區位選擇指標之建立,規劃學報,20: 71-86。 31. 蔡永利(1994),改進土地公告現值作業,高雄市政府研究報告。 32. 蔡瑞煌、高明志與張金鶚(1999),類神經網路應用於房地產估價之研究,住宅學報,8: 1-20。 33. 潘俊和(1998),不動產估價實務問題之探討,現代地政,200(2): 62-65。 34. 賴家瑞、溫坤禮(2005),粗糙集方法於授信審核之應用,計量管理期刊,2(1): 69-78。 35. 謝明瑞、葉輔(2003),不動產估價實務及估價方法之探討,空大學訊,311: 104-116。 英文部分 1. Allen, B.(1994), Case-Based Reasoning: Business Application, Communication of the ACM, 37(3): 40-42. 2. Anonymous(2003), Standard on Automated Valuation Models, Assessment Journal, 10(4): 109-154. 3. Apte, C. and Weiss, S.(1997), Data Mining with Decision Trees and Decision Rules, Future Generation Computer System, 13: 197-210. 4. Attoh-Okine, N.O.(2003), Rule Induction in Productivity Analysis: A Rough Set Approach, Engineering, Construction and Architectural Management, 10(6): 413-417. 5. Bagis, A.(2003), Determining Fuzzy Membership Functions with Tabu Search- An Application to Central, Fuzzy Sets System, 139: 209-225. 6. Bagnoli, C. and Smith, H.C.(1998), The Theory of Fuzzy Logic and its Application to Real Estate Valuation, Journal of Real Estate Research, 16(2): 169-199. 7. Bardossy, A. and L. Duckstein(1995), Fuzzy Rule-Based Modeling with Application to Geophysical, Biological and Engineering Systems, CRC Press, New York. 8. Barlowe, R.(1958), Land Resource Economics, Prentice Hall Iac. 9. Benjamin, J.D., Guttery, R.S., Sirmans, C.F.(2004), Mass Appraisal: An Introduction to Multiple Regression Analysis for Real Estate Valuation, Journal of Real Estate Practice and Education, 7(1):65-77. 10. Berger, P.A.(2004), Rough Set Rule Induction for Suitability Assessment, Environmental Assessment, 34(4): 546-558. 11. Berry, M.J.A. and Linoff, G.(1997), Data Mining Techniques for Marketing, Sales and Customer Support, John Wiley & Sons, New York. 12. Berson, A., Smith, S. and Thearling, K.(1999), Building Data Mining Application for CRM, McGraw-Hill, USA. 13. Besner, C.(2002), A Spatial Autoregressive Specification with a Comparable Sales Weighting Scheme, Journal of Real Estate Research, 24(2): 193-211. 14. Bertocchi, M., Cavalli, E., Komlosi, S. (1996), Modeling Techniques for Financial Markets and Bank Management, Physica-Verlag, Heidelberg, 192-211. 15. Beynon, M.J., Curry, B. and Morgan, P.(2001), Knowledge Discovery in Marketing—An Appraoch Through Rough Set Theory, European Journal of Marketing, 35(7/8): 915-933. 16. Beynon, M.J.(2004), Stability of Continuous Value Discretisation: An Application within Rough Set Theory, International Journal of Approximation Reasoning, 35: 29-53. 17. Bezdek, J.(1994), Fuzzy Models—What are they, and why? In: R.J. Marks(Ed.), Fuzzy Logic Technology and Application, IEEE Technology Update Series, Piscataway, NJ, 3-7. 18. Bhattacharya, S.(1999), Direct Marketing Performance Modeling using Genetic Algorithm, INFORMS Journal on Computing, 11(3): 248-257. 19. Bin, O.(2004), A Prediction Comparison of Housing Sales Prices by Parametric versus Semi-parametric Regressions, Journal of Housing Economics,13(1): 68-84. 20. Bloom, H.S., H.F. Ladd and J. Yinger(1983), Are Property Taxes Capitalized into House Value, in Local Provision of Public Service: Tiebout Model after Twenty-Five Year, ed. Zodraw, Academic Press. 21. Bond, M.T., Seiler, V.L. and Seiler, M.J.(2002), Residential Real Estate Prices: A Room with a View, Journal of Real Estate Research, 23(1/2): 129-137. 22. Bonnetain, P.(2003), A Hedonic Price Model for Islands, Journal of Urban Economics, 54(2): 368-77. 23. Borst, R. A.(1992), Artificial Neural Networks: The Next Modeling/ Calibration Technology for the Accessment Community, Artificial Neural Networks, 69-94. 24. Bose, I. And Mahapatra, R.K.(2001), Business Data Mining- An Machine Learning Perspective, Information & Management, 39: 211-225. 25. Box, G.E.P.and Cox, D.R.(1964), An analysis of transformations, Journal of Royal Statistical Society Services , 26:211-243. 26. Brasington, D. M.(2001), Capitalization and Community Size, Journal of Urban Economics , 50(3): 385-95. 27. Brunson, A., Buttimer, R. and Rutherford, R.(1994), Neural Networks, Nonlinear Specification, and Industrial Property Values, Working Paper Series, University of Texas at Arlington, 94-102. 28. Calhoun, C.A.(2001), Property Valuation Methods and Data in the U.S., Housing Finance International, 16(2): 12-23. 29. Cassel, E. and Mendelsohn, R.(1985), The Choice of Functional Forms for Hedonic Price Equations, Journal of Urban Economics, 18: 35-142. 30. Chau, K.W, Ma, Vincent S.M and Ho, Daniel C.W(2001), The Pricing of ''Luckiness'' in the Apartment Market, Journal of Real Estate Literature,9(1): 31-40. 31. Chiou, Y.C. and L.W. Lan(2005), Genetic Fuzzy Logic Controller: An Iterative Evolution Algorithm with New Encoding Method, Fuzzy Sets and Systems, 152: 617-635. 32. Chmielewski, M.R. and J.W. Grzymala-Busse(1996), Global Discretization of Continuous Attributes as Preprocessing for Machine Learning, International Journal of Approximate Reasoning, 15: 319-331. 33. Clauretie, T.M., W. Kuhn and R.K. Schwer(2004), Residential Properties Taken Under Eminent Domain: Do Government Appraisers Track Market Values? Journal of Real Estate Research, 26(3): 317-327. 34. Cox, E.(1994), The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using and Maintaining Fuzzy Systems, Boston. 35. Cummins, J.D. and R.A. Derring(1997), Managing the Tax Liability of a Property-Liability Insurance Company, Journal of Risk Insurance, 64(4): 695-711. 36. D’amato, M.(2002), Appraising Property with Rough Set Theory, Journal of Property Investment& Finance, 20(4): 406-418. 37. Dell, G.(2004), AVMs: The Myth and the Reality; the Problem and the Solution, Valuation Insights and Perspectives, 9(3): 12-17. 38. DeJong, K.A.(1987), A Daptive System Design: A Genetic Approach, IEEE Transport on System Management and Cyber, 10(9): 566-574. 39. Dilmore, G.(1993), Fuzzy Set Theory: An Introduction to its Application for Real Estate Analysis, Paper Presented at the Annual Conference of the American Real Estate Society, Santa Barbara,California. 40. Dimitras, A.I., Slowinski, R., Susmaga, R. and Zopounidis, C.(1999), Bussiness Failure Prediction Using Rough Sets, European Journal of Operational Research, 114: 263-280. 41. Din, A., Hoesli, M. and Bender, A.(2001), Environment Variables and Real Estate Prices, Urban Study, 38(11): 1-22. 42. Do, Q. and Grudnitski, G.(1992), A Neural Network Approach to Residential Property Appraisal, Real Estate Appraiser, December, 38-45. 43. Ebanks, B., W. Kanvowski, K.M. Ostaszewski(1992), Application of Measure of Fuzziness to Risk Classification in Insurance, In: Computing and Information, IEEE Computer Society Press, Los Alamitos, CA, 290-291. 44. Eker, I. and Torun, Y.(2006), Fuzzy Logic Control to be Conventional Method, Energy Conversion and Management, 47: 377-394. 45. Espey, M. and Owusu Edusei, K.(2001), Neighborhood Parks and Residential Property Values in Greenville, South Carolina, Journal of Agricultural and Applied Economics ,33(3): 487-92. 46. Famili, A., Shen, W.M., Weber, R. and Simouldis, E.(1997), Data Preprocessing and Intelligent Data Analysis, Intelligent Data Analysis, 1: 3-23. 47. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P. (1996), Advances in Knowledge Discovery and Data Mining, AAAI, New York, 1-29. 48. Freeman, A.M.(1985), Methods for accessing the benefits of environmental program, in Handbook of Natural Resources and Energy Economics, Kneese, A.V. and Sweeney, J.L., North-Holland, Amsterdam. 49. Goldberg, D.E.(1994), Genetic and Evolutionary Algorithms Come of Age, Communications of the ACM, 37(3): 113-119. 50. Greene, W.H.(2003), Econometric Analysis(5th ed.), New York: Macmillan. 51. Grzymala-Bausse, J.W., Stefanowski, J.(2001), Three Discretization Methods for Rule Induction, International Journal of Intelligent Systems, 1: 29-38. 52. Han, J. and Kamber, M.(2001), Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco. 53. Hoesli, M., Jani, E. and Bender, A.(2005), Monte Carlo Simulations for Real Estate Valuation, Research Paper of International Center for FAME(Financial Asset Management and Engineering), Switzerland. 54. Hong, T.P. and Lee, C.Y.(1996), Induction of Fuzzy Rules and Membership Functions from Training Examples, Fuzzy Sets and Systems, 84: 33-47. 55. Hyung, L.K., Y.S. Song and K.M. Lee(1994), Similarity Measure Between Fuzzy Sets and Between Elements, Fuzzy Sets and Systems, 62: 291-293. 56. Kang, H.B. and Reichert, A. K. (1987), An Evaluation of Alternative Estimation Techniques and Function Forms in Developing Statistical Appraisal Models, Journal of Real Estate Research, 2(1): 1-29. 57. Kerber, R.(1992), ChiMerge: Discretization of Numeric Attributes, In Proceedings of the Tenth National Conference on AI, San Jose, CA, July 12-16, 123-128. 58. Kleinbaum, D.G., Kupper, L.L. and Muller, K.E.(1988), Applied Regression Analysis and other Multivariate Methods(2th ed.), PWS-Kent, Boston: Mass. 59. Kinnard, W.N.(2001), New Thinking in Appraisal Theory, The Appraisal Journal, 69(3): 235-244. 60. Kusiak, A.(2001), Rough Set Theory: A Data Mining Tool for Semiconductor Manufacturing, IEEE Transactions on Electronics Packaging Manufacturing, 24(1): 44-50. 61. Lai, P.Y.(2006), Analysis of the Mass Appraisal Model Using Artificial Neural Network in Kaohsiung City, 23rd Pan Pacific Congress of Appraisers, Valuers and Counserious, San Francisco, CA , 1-14. 62. Lan, Y., Zhang, L. and Liu, L.(2003), A Method for Extracting Rules from Imcomplete Information System, Elsevier Science B.V., 1-8. 63. Lentz, G.H. and Wang, K.(1998), Residential Appraisal and the Lending Process: A Survey of Issues, Journal of Real Estate Research, 15: 11-39. 64. Liang, M., T. Yeap, A. Hermansyah and S. Rahmati(2003), Fuzzy Control of Spindle Torgue for Industrial CNC Maching, International Journal of Mach Tools Manufacture, 43: 1947-1508. 65. Lin, B. and K.K. Cho(2002), An Inventory Classification Method Using Rough Set Theory, Proceedings of 7¬th Annual International Conference, 310-313. 66. Lins, M.P.E., Novaes, L.F.D., Legey, L.F.L.(2005), Real estate appraisal: A double perspective data envelopment analysis approach, Annals of Operations Research, 138(1): 79-96. 67. Loomis, J., Rameker, V. and Seidl, A.(2004), A Hedonic Model of Public Market Transactions for Open Space Protection, Journal of Environmental Planning and Management, 47(1): 83-96. 68. McBratney, A.B. and I.O.A. Odeh(1997), Application of Fuzzy Sets in Soil Science: Fuzzy Logic, Fuzzy Measurement and Fuzzy Decisions, 77: 85-113. 69. McCluskey W. and Anand S.(1999), The Application of Intelligent Hybrid Techniques of Residential Properties, Journal of Property Investment and Finance, 17(3): 218-238. 70. Mi, J.S, Wu, W.Z. and Zhang, W.X.(2004), Approaches to Knowledge Reduction Based on Variable Precision Rough Set Model, Information Sciences, 159: 255-272. 71. Mora-Esperanza, J.G.(2004), Artificial Intelligence Applied to Real Estate Valuation- An Example for the Appraisal of Madrid, Research Paper of CATASTRO, Spain, 255-265. 72. Narasimhan, R.(1979), A Fuzzy Subset Characterization of a Site-Selection Problem, Decision Science, 10(4): 618-628. 73. Nguyen, N. and Cripps, A.I.(2001), Predicting Housing Value: A Comparison of MRA and ANN, Journal of Real Estate Research, 22(3): 313-336. 74. Nijkamp, P. and Vindigni, G.(2002), Food Security and Agricultural Sustainability: An Overview of Critical Success Factors, Environmental Management and Health, 13(5): 495-511. 75. Nijkamp, P. and Vindigni, G.(2003), Impact Assessment of Qualitative Policy Scenarios: A Comparative Case Study on Land Use in Sicily, Management of Environmental Quality: An International Journal, 14(1): 108-133. 76. Palmquist, R.B.(1992), Valuing Localized Externalities, Journal of Urban Economics, 31: 59-68. 77. Pawlak, Z.(1982), Rough Sets, International Journal of Information &Computer Science, 11: 341-356. 78. Pawlak, Z.(1985), Rough Sets and Fuzzy Sets, Fuzzy Sets System, 17: 99-102. 79. Pawlak, Z.(1991), Rough Sets, Theoretical Aspects of Reasoning about Data, Dordrecht: Kluwer Academic Publishers. 80. Pawlak, Z.(1997), Rough Set approach to Knowledge- based decision support, European Journal of Operational Research, 99: 48-57. 81. Pawlak, Z.(2002), Rough Set Theory and its Applications, Journal of Telecommunications and Information Technology, 3: 7-10. 82. Poel, D.(1998), Rough Sets for Database Marketing, In: Polkowski, L., Skowron, A. (Eds), Rough Sets in Knowledge Discovery, 2, Physica-Verlag, Wurzburg, 324-335. 83. Polkowski, L., S.Tsumoto, and T. Lin(2000), Rough Set Methods and applications, Physica-Verlag, Heidelberg New Work: 49-88. 84. Quinlan, J.R.(1993), Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA. 85. Ramanathan, R.(2002), Introductory Econometrics with Application South-Western, Thomson Learning, Ohio: Mason. 86. Rosen S. (1974), Hedonic price and implicit markets: product differentiation in pure competition, Journal of Political Economy, 82:34-55. 87. Shannon, C.E.(1948), The Mathematical Theory of Communication, Bell System Technical Journal, 27: 379-423. 88. Shaout, A. and M. Al-Shommari(1998), Fuzzy Logic Modeling for Performance Application Systems—A Framework for Empirical Evaluation, Expert Systems with Application, 14: 323-328. 89. Shapiro, A.F.(2004), Fuzzy Logic in Insurance, Insurance: Mathematics and Economics, 35: 399-424. 90. Shen, L., Tay, L.Q. and Shen, Y.(2000), Fault Diagnosis using Rough Sets Theory, Computer in Industy, 43(1): 61-72. 91. Shen, L. and Loh, H.T.(2004), Applying Rough Sets to Market Timing Decision, Decision Support Systems, 37: 583-597. 92. Slowinski, R.(1992), Intelligent Decision Support: Handbook of Applications and Advance of the Rough Set Theory, Kluwer Academic Publishers. 93. Slowinski, R., Zopounidis, C. and Dimitras, A.(1997), Prediction of Company Acquisition in Greece by means of the Rough Set Approach, European Journal of Operational Research, 100: 1-15. 94. Slowinski, R. and Vanderpooten, D.(2000), A Generalized Definition of Rough Approximation, IEEE Transaction on Data and Knowledge Engineering, 12: 331-336. 95. Smersh, G.T. and Smith, M.T.(2000), Accessibility changes and urban house price appreciation:A constrained optimization approach to determining distance effects, Journal of housing economics, 9(3): 187-196. 96. Stevenson, S. (2004), New Empirical Evidence on Heteroscedasticity in Hedonic Housing Models, Journal of Housing Economics. ,13(2): 136-53. 97. Sun, H. and L. Liu(2002), A Linear Output Structure for Fuzzy Logic Controllers, Fuzzy Sets System, 131: 265-270. 98. Talbot, C.J.(1988), Scheduling TV Advertising: An Expert Systems Approach to Utilizing Fuzzy Knowledge, Proceedings of the Fourth Australian Conference on Applications of Expert Systems, Sydney, Australia. 99. Tay, D.P.H. and Ho, D.K.K.(1992), Artificial Intelligence and the Mass Appraisal of Residential Apartment, Journal of Property Valuation & Investment, 10: 525-540. 100. Tay, E.H. and Shen, L.(2002), Economic and Financial Prediction Using Rough Sets Model, European Journal of Operational Research, 141: 641-659. 101. Tiwari, P. and Hasegawa, H.(2001), Welfare Effects of Public Housing in Tokyo, Journal of Policy Modeling, Elsevier, 23(4): 421-431 102. Tsai, Y.C., Cheng, C.H. and Chang, J.R.(2006), Entropy-Based Fuzzy Rough Classification Approach for Extracting Classification Rules, Expert System with Applications, 31: 436-443. 103. Tse, Raymond Y. C.(2002), Estimating Neighborhood Effects in House Prices: Towards a New Hedonic Model Approach, Urban-Studies. ,39(7): 1165-1180. 104. Vander Wal, A.J.(1995), Application of Fuzzy Logic Control in Industry, Fuzzy Sets and Systems, 74: 33-41. 105. Walczak, B. and Massart, D.L.(1999), Tutorial Rough Sets Theory, Chemometrics and Intelligent Laboratory Systems, 47: 1-16. 106. Worzala, E., Lenk, M. and Silva, A.(1995), An Exploration of Neural Networks and its Application to Real Estate Valuation, Journal of Real Estate Research, 10(2): 185-201. 107. Wu, C., Yue, Y., Li, M. and Adjei, O.(2004), The Rough Set Theory and Application, Engineering Computation, 21(5/6): 488-511. 108. Yen, J. and B. Lee(1995), An interval fuzzy truth-value approach to the generalized modus ponens, IEEE Proceedings of isuma, 3rd International Symposium on Uncertainty Modeling and Analysis, 792-797. 109. Zadeh, L.A.(1973), The Rule of Fuzzy Logic in Management of Uncertainty in Expert Systems, Fuzzy Sets and Systems, 11: 199-277. 110. Zhang, W. X., Leung, Y.(1996), Theory of including degrees and its applications to uncertainty inferences, Soft Computing in Intelligent Systems and Information Processing, New York, IEEE, 496-501. 111. Ziarko, W.(1993), Variable Precision Rough Set Model, Journal of Computer and System Sciences, 46(1): 39-59. 112. Ziarko, W., Gloan, R. and Edwards, D.(1993), An Application of Datalogic/R Knowledge Discovery Tool to Identify Strong Predictive Rules in Stock Market Data, AAAI-93 Workshop on Knowledge Discovery in Databases, Washinton. 113. Zimmermann, H.J.(1992), Methods and Applications of Fuzzy Mathematical Programming, In: R.R. Yager and L.A. Zadeh(Eds.), An Introduction to Fuzzy Logic Application in Intelligent Systems, Boston, 97-120.
摘要: 
即時掌握不動產價格,對於公部門達成政策目的與私部門的經營管理都具有實質重要性。由於不動產市場之無效率本質,存有高度不確定情況,似乎頗為符合粗糙集理論與模糊邏輯方法之操作環境。本研究衡諸傳統方法有其限制或不足、不動產估價的發展趨勢,以及不動產市場的特殊性,應用資料挖掘程序整合粗糙集理論及模糊邏輯方法,分別建構大量估價與個別估價模式,使用大花蓮市住宅房地產的實際成交案例進行實證分析與案例評估。實驗結果發現,本研究大量估價模式之估計結果,以命中率及誤差率衡量之估價績效略優於特徵價格法,接近於文獻上類神經網路作大量估價,以及自動估價模型估計結果的一般表現;個別估價模式方面,本文延續D’amato(2002)與Bagnoli and Smith(1998)將粗糙集理論與模糊邏輯方法運用於不動產估價的研究,進一步整合兩種方法,結果改良了兩者研究中的不足。實證結果另證實了相關文獻對規則推論方法之評價,亦即應用上具有前提限制少、整合困難度低等等優勢,這些方法特性對於未來建置功能型的自動估價系統,極具參考價值。本研究結果對於公私部門發展自動估價模型,管控市場與信用風險,即時揭露市場訊息,改善不動產市場體質,健全市場運作機制,具有實質的助益。

To master the prompt real estate price has its substantial significance on the policy purpose and the management for both the public and the private sectors individually. The inefficient characteristic of real estate market, with profound uncertainty, seems to fit the manipulation environment of Rough Set Theory and Fuzzy Logic Approach as well. Owing to the limitation and inadequacy of traditional method in terms of the trend and development of real estate appraisal, this research constructs mass appraisal and individual appraisal model by adopting some actual transactions of housing cases in Hualien to make experimental analysis and case evaluation. The result indicates that the estimated outcome of the mass appraisal model is superior to the Hehonic Price Method in the aspect of the appraisal performance of Hit Rate and MAPE measurement. It is pretty close to the mass appraisal conducted by the Artificial Neural Network in literatures and the general performance of the outcome of the Automatic Valuation Model. For the individual appraisal model, this study follow D'amato (2002) and Bagnoli and Smith (1998) by integrating further both the Rough Set Theory and Fuzzy Logic Approach utilized in the research of real estate appraisal, and thus improves the shortcomings. The findings also affirm the appraisal of Rule Induction approach in relative literature. That is, in constructing the functional automatic appraisal system, these methods claim reference value with the advantages of less limitation in application and low difficulty in integration. Therefore, the results of this research provide essential benefits for public and private sectors in the areas of developing Automatic Valuation Model, controlling market and credit risks, revealing the prompt market information, improving the real estate constitution, and completing the market operational mechanism as well.
URI: http://hdl.handle.net/11455/27881
其他識別: U0005-1807200707393900
Appears in Collections:應用經濟學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.