Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2789
標題: 以瑞士捲型燃燒器供熱之微型甲醇-水蒸汽產氫重組噐之性能測試
Experimental Study on the Performance of Hydrogen Production from Miniature Methanol-Steam Reformer Integrated with Swiss-Roll Type Combustors
作者: 張哲銘
Chang, Che-Ming
關鍵字: 微型產氫反應器;miniature hydrogen production reactor;甲醇-水蒸汽重組;觸媒反應;瑞士捲型燃燒器;methanol-steam reforming;catalytic reaction;swiss-roll type combustor
出版社: 機械工程學系所
引用: 【1】 S.A. Sherif , F. Barbir , T.N. Veziroglu, Toward a hydrogen economy, The Electricity J. 18 (2005) 62-76. 【2】 G. Marban, T. Valdes-Solis, Towards the hydrogen economy, Int. J. Hydrogen Energy 32 (2007) 1625-1637. 【3】 K. Maruta1, K. Takeda, J. Ahn, K. Borer, L. Sitzki, P.D. Ronney, Catalytic combustion in microchannel for MEMS power generation, The Third Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea (2001). 【4】 J.D. Morse, Micro-fuel cell power sources, Int. J. Energy Research 31 (2007) 576-602. 【5】 T. Kim, J. Hwang, S. Kwon, A MEMS methanol reformer heated by decomposition of hydrogen peroxide, Lab on a Chip 7 (2007) 835-841. 【6】 J.M. Sohn, Y.C. Byun, J.Y. Cho, J. Choe, K.H. Song, Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol, Int. J. Hydrogen Energy 32 (2007) 5103- 5108. 【7】 J.Y. Won, H.K. Jun, M.K. Jeon, S.I. Woo, Performance of microchannel reactor combined with combustor for methanol steam reforming, Catalysis Today 111 (2006) 158-163. 【8】 G.G Park, S.D. Yim, Y.G. Yoon , W.Y. Lee, C.S. Kim, D.J. Seo, K. Eguchi, Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems, J. Power Sources 145 (2005) 702-706. 【9】 T. Kim, Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell, Int. J. Hydrogen Energy 34 (2009) 6790-6798. 【10】 R. Chein, Y.C. Chen, J.Y. Chen, J.N. Chung, Design and test of a miniature hydrogen production reactor integrated with heat supply, fuel vaporization, methanolsteam reforming and carbon monoxide removal unit, Int. J. Hydrogen Energy 37 (2012) 6562-6571. 【11】 A.C. Fernandez-Pello, Micropower generation using combustion: issues and approaches, Proceedings of the Combustion Institute 29 (2002) 883-899. 【12】 D.C. Walther, J. Ahn, Advances and challenges in the development of power-generation systems at small scales, Progress in Energy and Combustion Science 37 (2011) 583-610. 【13】 A. Gomez, J.J. Berry, S. Roychoudhury, B. Coriton, J. Huth, From jet fuel to electric power using a mesoscale, efficient Stirling cycle, Proceedings of the Combustion Institute 31 (2007) 3251-3259. 【14】 W.M. Yang, S.K. Chou, C. Shu, H. Xue, Z.W Li, Development of a prototype micro-thermophotovoltaic power generator, J. Phys. D: Appl. Phys. 37 (2004) 1017-1020. 【15】 J. Zhou, Y. Wang, W. Yang, , J. Liu, Z. Wang, K. Cen, Combustion of hydrogen–air in catalytic micro-combustors made of different material, Int. J. Hydrogen Energy 34 (2009) 3535-3545. 【16】 A.M. Karim, J.A. Federici, D.G. Vlachos, Portable power production from methanol in an integrated thermoeletric/microreactor system, J. Power Sources 179 (2008) 113–120. 【17】 J.P. Brunelle, Preparation of Catalysts by Adsorption of Metal Complexes on Mineral Oxides, Studies in Surface Science and Catalysis 3 (1979) 211-232. 【18】 Y. Ma, C. Ricciuti, T. Miller, J. Kadlowec, H. Pearlman, Enhanced Catalytic Combustion Using Sub-micrometer and Nano-size Platinum Particles, Energy & Fuels 22 (2008) 3695-3700. 【19】 W. Choi, S. Kwon, H.D. Shin, Combustion characteristics of hydrogen–air premixed gas in a sub-millimeter scale catalytic combustor, Int. J. Hydrogen Energy 33 (2008) 2400-2408. 【20】 C.H. Leu, S.C. King, C.C. Chen, J.M. Huang, S.S. Tzeng, I.H. Liu, W.C. Chang, Investigation of the packed bed and the micro-channel bed for methanol catalytic combustion over Pt/A12O3 catalysts, Applied Catalysis A: General 382 (2010) 43-48. 【21】 J. Jin, S. Kwon, Fabrication and performance test of catalytic micro combustors as a heat source of methanol steam reformer, Int. J. Hydrogen Energy 35 (2010) 1803-1811. 【22】 G.B. Chen, C.P Chen, C.Y. Wu, Y.C. Chao, Effects of catalytic walls on hydrogen/air combustion inside a micro-tube, Applied Catalysis A: General 332 (2007) 89-97. 【23】 G.B Chen, Y.C. Chao, C.P. Chen, Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation, Int. J. Hydrogen Energy 33 (2008) 2586 – 2595. 【24】 S.A. Lloyd, F.J. Weinberg, A burner for mixtures of very low heat content, Nature 251 (1974) 47-49. 【25】 S.A. Lloyd, F.J. Weinberg, Limits to energy release and utilization from chemical fuels, Nature 257 (1975) 367-370. 【26】 L. Sitzki, K. Borer, E. Schuster, P.D. Ronney, Combustion in microscale heat-recirculating burners, The Third Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea (2001). 【27】 J. Ahn, C. Eastwood, L. Sitzki, P.D. Ronney, Gas-phase and catalytic combustion in heat-recirculating burners, Proceedings of the Combustion Institute 30 (2005) 2463-2472. 【28】 C.H. Kuo, P.D. Ronney, Numerical modeling of non-adiabatic heat-recirculating combustors, Proceedings of the Combustion Institute 31 (2007) 3277-3284. 【29】 N.I. Kim, S. Kato, T. Kataoka, T. Yokomori, S. Maruyama, T. Fujimori, K. Maruta, Flame stabilization and emission of small Swiss-roll combustors as heaters, Combustion and Flame 141 (2005) 229-240. 【30】 N.I. Kim, S. Kato, T. Kataoka, T. Yokomori, S. Maruyama, T. Fujimori, K. Maruta, Development and scale effects of small Swiss-roll combustors, Proceedings of the Combustion Institute 31 (2007) 3243-3250. 【31】 K. Maruta1, K. Takeda, J. Ahn, K. Borer, L. Sitzki, P.D. Ronney, Extinctionlimits of catalytic combustion in microchannels, Proceedings of the Combustion Institute 29 (2002) 957-963. 【32】 A. Qi, B. Peppley, K. Karan, Integrated fuel processors for fuel cell application: A review, Fuel Processing Technology 88 (2007) 3-22. 【33】 B. Smith, M. Loganathany, M.S. Shanth, A Review of the water gas shift reaction kinetics, Int. J. Chemical Reactor Engerring 8 (2010) Review R4. 【34】 S. Srinivas, A. Dhingra, H. Im, E. Gulari, A scalable silicon microreactor for preferential CO oxidation: performance comparison with a tubular packed-bed microreactor, Applied Catalysis A: General 274 (2004) 285-293. 【35】 T. Kim, S. Kwon, MEMS fuel cell system integrated with a methanol reformer for a portable power source, Sensors and Actuators A 154 (2009) 204-211. 【36】 P. Panagiotopoulou, D.I. Kondarides , X.E. Verykios, Selective methanation of CO over supported Ru catalysts, Applied Catalysis B: Environmental 88 (2009) 470-478. 【37】 K. Urasaki, K. Endo, T. Takahiro, R. Kikuchi, T. Kojima, S. Satokawa, Effect of Support Materials on the Selective Methanation of CO over Ru Catalysts, Top Catal 53 (2010) 707-711. 【38】 J. Tong, H. Suda, K. Haraya, Y. Matsumura, A novel method for the preparation of thin dense Pd membrane on macroporous stainless steel tube filter, J. Membrane Science 260 (2005) 10-18. 【39】 W.H. Chen, P.C. Hsu, Hydrogen permeation measurements of Pd and PdeCu membranes using dynamic pressure difference method, Int. J. Hydrogen Energy 36 (2011) 9355-9366. 【40】 S. Takenaka, T. Shimizu, K. Otsuka, Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts, Int. J. Hydrogen Energy 29 (2004) 1065-1073. 【41】 C. Galletti, S. Specchia, G. Saracco, V. Specchia, CO-selective methanation over Ru-γAl2O3 catalysts in H2-rich gas for PEM FC applications, Chemical Engineering Science 65 (2010) 590-596. 【42】 Z. Li, W. Mi, S. Liu, Q. Su, CO deep removal with a method of two-stage methanation, Int. J. Hydrogen Energy 35 (2010) 2820-2823 【43】 J.D. Holladay , J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catalysis Today 139 (2009) 244–260. 【44】 D.R. Palo, R.A. Dagle, J.D. Holladay, Methanol steam reforming for hydrogen production, Chem. Rev. 107 (2007) 3992-4021. 【45】 R.E. Hayes, S.T. Kolaczkowski, Introduction to catalytic combustion, Gordon and Breach Science Publishers, Australia (1997). 【46】 B. Lindstrom, L.J. Pettersson, Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications, Int. J. Hydrogen Energy 26 (2001) 923-933. 【47】 Z. Wang, J. Xi, W. Wang, G. Lu, Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts, J. Molecular Catalysis A: Chemical 191 (2003) 123-134. 【48】 B. Lindstrom, J. Agrell, L.J. Pettersson, Combined methanol reforming for hydrogen generation over monolithic catalysts, Chemical Engineering Journal 93 (2003) 91-101. 【49】 J.C. Brown, E. Gulari, Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts, Catalysis Communications 5 (2004) 431-436. 【50】 R. Tanaka, M. Shinoda, N. Arai, Combustion characteristics of a heat-recirculating ceramic burner using a low-calorific-fuel, Energy Conversion and Management 42 (2001) 1897-1907.
摘要: 
本研究建構一個微型平板式石英材質之甲醇-水蒸汽重組產氫反應器,並對其進行性能測試。此反應器包含四個功能組件:甲醇-水蒸汽氣化裝置、以銅鋅觸媒(CuO/ZnO/Al2O3)做甲醇-水蒸汽重組反應之重組裝置、以釕觸媒(Ru/Al2O3)做CO移除之甲烷化反應裝置以及以鉑觸媒(Pt/Al2O3)做甲醇-空氣燃燒反應之瑞士捲型供熱裝置。為簡化反應器之設計,本研究採用甲醇作為單一燃料供給燃燒與重組使用。實驗結果顯示,此反應器可以成功的運行,並直接從室溫下啟動。反應器的性能取決於燃燒器與重組器之反應物進料速率,通過使用較低的重組器之反應物進料率與較高的燃燒器之反應物進料率,可以得到較高的甲醇轉化率。

然而,較高的甲醇轉化率會產生較高的CO濃度。在本研究中,採用CO甲烷化做為CO移除之方式,CO甲烷化之實驗結果顯示:在較低的甲烷化反應溫度下,可以得到較高的CO轉化率與較低的H2消耗率,使用較高的重組器之反應物進料率與較低的燃燒器之反應物進料率,也許有可能將CO濃度降至10-100 ppm (Parts Per Million)以下,然而,在這種條件下,甲醇的轉化率將會是比較低的。而在較高的甲烷化反應溫度下,會同時發生CO甲烷化、CO2甲烷化及逆向水氣轉移反應,導致較低的CO轉化率與較高的H2消耗率。進一步反應器之設計與性能測試將著重於適當的熱管理機制與更精細的觸媒製備方式,以實現高甲醇轉化率、高CO轉化率與低H2消耗率之目的。

  In this study, a plate-type quartz-made miniature hydrogen (H2) production reactor based on methanol-steam reforming reaction was built and tested. The reactor was composed of four units: vaporizer for liquid methanol-water mixture vaporization, reformer for methanol-steam reforming catalyzed by CuO/ZnO/Al2O3 catalyst, methanator for carbon monoxide (CO) removal catalyzed by Ru/Al2O3 catalyst, and Swiss-roll type combustor catalyzed by Pt/Al2O3 catalyst. Methanol was used as the single fuel for both combustion and reforming reactions that simplified the reactor design. The experimental results showed that the reactor can be operated successfully started from room temperature and the reactor performance depended on the feed rates to combustor and reformer. High methanol conversion can be achieved by using low feed rate to the reformer and high feed rate to the combustor.

  However, the high methanol conversion produced high CO concentration and CO methanation was applied for the CO removal in this study. The CO methanation test results indicated that high CO conversion and low H2 consumption can be obtained at low reaction temperature. With high feed rate to the reformer and low feed rate to the combustor, CO concentration can be possibly reduced to the level of below 10-100 ppm. With this case, however, the methanol conversion would be low. The simultaneous CO methanation, CO2 methanation and reversed water gas shift reactions were found when the methanation reaction temperature was high. This resulted in low CO conversion and high H2 consumption. Further reactor design and test with suitable heat management and refinement in catalyst preparation that yielding high methanol conversion, high CO conversion and low H2 consumption are required.
URI: http://hdl.handle.net/11455/2789
其他識別: U0005-2808201220105200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.