Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2790
標題: 以薄膜反應器進行高溫高壓水氣轉移反應之數值模擬
Numerical Modeling on the High-temperature High-pressure Water Gas Shift Reaction in Membrane Reactors
作者: 林郁翔
Lin, Yu-Hsiang
關鍵字: 水氣轉移反應;water gas shift reaction;膜反應器;一氧化碳轉換率;membrane reactors;CO conversion
出版社: 機械工程學系所
引用: [1] F. Bustamante, R. M. Enick, R. P. Killmeyer, B. H. Howard, K. S. Rothenberger, A. V. Cugini, B. D. Morreale and M. V. Ciocco, “Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics,” AIChE Joural Vol.51(5), pp.1440-1454, 2005. [2] R. Killmeyer, B. Howard, M. Ciocco, B. Morreale, R. Enick, F. Bustamante, “Water-gas shift membrane reactor studies,” National Energy Technology Laboratory, 2004. [3] A. Criscuoli, A. Basile, E. Drioli, “An analysis of the performance of membrane reactors for the water-gas shift reaction using gas feed mixtures,” Catalysis Today Vol.56, pp.53-64, 2000. [4] J. C. D. Costa, G. P. Reed and K. Thambimuthu, “High temperature gas separation membranes in coal gasification,” Energy Procedia Vol.1, pp.295-302, 2009. [5] D. Mendes, V. Chibante, J. M. Zheng, S. Tosti, F. Borgognoni, A. Mendes, L. M. Madeira, “Enhancing the production of hydrogen via wateregas shift reaction using Pd-based membrane reactors,” International Journal of Hydrogen Energy Vol.35, pp.12596-12608, 2010. [6] 陳盈儒, “鈀銀合金膜反應器進行水煤氣轉化反應之研究,” 逢甲大學碩士論文,化學工程研究所,2009。 [7] Y. Bi, H. Xu, W. Li, A. Goldbach, “Water–gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst,” International Journal of Hydrogen Energy Vol.34, pp.2965-2971, 2009. [8] A. S. Augustine, Y. H. Ma, N. K. Kazantzis, “High pressure palladium membrane reactor for the high temperature wateregas shift reaction,” International Journal of Hydrogen Energy Vol.36, pp.5350-5360, 2011. [9] G. Barbieri, A. Brunetti, G. Tricoli, E. Drioli, “An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen experimental analysis of water gas shift,” Journal of Power Sources Vol.182, pp.160-167, 2008. [10] J. M. Sanchez, M. M. Barreiro, M. Marono, “Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor,” Biomass and Bioenergy Vol.35, pp.s132-s144, 2011. [11] P. Pinacci, M. Broglia, C. Valli, G. Capannelli, A. Comite, “Evaluation of the water gas shift reaction in a palladium membrane reactor,” Catalysis Today Vol.156, pp.165-172, 2010. [12] D. Mendes, S. Sa, S. Tosti, J. M. Sousa, L. M. Madeira, A. Mendes, “Experimental and modeling studies on the low-temperature water-gas shift reaction in a dense Pd–Ag packed-bed membrane reactor,” Chemical Engineering Science Vol.66, pp.2356-2367, 2011. [13] A. Basile, V. Violante, F. Santella and E. Drioli, “Membrane integrated system in the fusion reactor fuel cycle,” Catalysis Today Vol.25(3-4), pp.321-326, 1995. [14] A. Basile, A. Criscuoli, F. Santella and E. Drioli, “Membrane reactor for water-gas shift reaction,” Gas. Sep. Purif. Vol.10(4), pp.243-254, 1996. [15] A. Basile, G. Chiappetta, S. Tosti and V. Violante, “Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor,” Separation and Purification Technology Vol.25(1-3), pp.549-571, 2001. [16] A.Basile, E. Drioli, F. Santella, V. Violante and G. Capannelli, “A study on catalytic membrane reactors for water gas shift reaction,” Gas. Sep. Purif. Vol.10(1), pp.53-61, 1996. [17] E. Kikuchi, S. Uemiya, N. Sato and H. Inoue, “Membrane reactor using microporous glass-supported thin film of palladium. Application to the water gas shift reaction,” Chemistry Letters, pp.489, 1989. [18] D. L. McKinley, “Metal alloy for hydrogen separation and purification,” U.S.A. US Patent 3,350,845, 1967. [19] B. D. Morreale, M. V. Ciocco, B. H. Howard, R. P. Killmeyer, A. V. Cugini and R. M. Enick, “Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures,” Journal of Membrane Science Vol.241(2), pp.219-224, 2004. [20] W. H. Chen, W. Z. Syu, C. I. Hung, “Numerical characterization on concentration polarization of hydrogen permeation in a Pd-based membrane tube,” International Journal of Hydrogen Energy Vol.36, pp.14734-14744, 2011. [21] R.J. B. Smith and L. Muruganandam, “CFD based optimization of water gas shift membrane reactor,” International Journal of ChemTech Research Vol.3(3), pp.1520-1525, 2011. [22] R. J. B. Smith , L. Muruganandam, M. S. Shantha, “CFD simulation of water gas shift membrane reactor—pressure effects on the performance of the reactor,” Chemical Product and Process Modeling Vol.6(1), pp.33-55, 2011. [23] R. J. B. Smith, L. Muruganandam, S. Murthy Shekhar, “CFD analysis of water gas shift membrane reactor,” Chemical Engineering Research and Design Vol.89, pp.2448-2456, 2011. [24] A. Brunetti, A. Caravella, G. Barbieri, E. Drioli, “Simulation study of water gas shift reaction in a membrane reactor,” Journal of Membrane Science Vol.306, pp.329-340, 2007. [25] P. Boutikos, V. Nikolakis, “A simulation study of the effect of operating and design parameters on the performance of a water gas shift membrane reactor,” Journal of Membrane Science Vol.350, pp.378-386, 2010. [26] K. Gosiewski, K. Warmuzinski, M. Tanczyk, “Mathematical simulation of WGS membrane reactor for gas from coal gasification,” Catalysis Today Vol.156, pp.229-236, 2010. [27] K. Gosiewski, M. Tanczyk, “Applicability of membrane reactor for WGS coal derived gas processing: simulation-based analysis,” Catalysis Today Vol.176, pp.373-382, 2011. [28] M. E. Adrover, E. Lopez, D. O. Borio, M. N. Pedernera, “Simulation of a membrane reactor for theWGS reaction: pressure and thermal effects,” Chemical Engineering Journal Vol.154, pp.196-202, 2009. [29] J. Galuszka, T. Giddings, G. Iaquaniello, “Membrane assisted WGSR – experimental study and reactor modeling,” Chemical Engineering Journal, 2011. [30] E. L. Romero, B. A. Wilhite, “Composite catalytic-permselective membranes: modeling analysis for H2 purification assisted by water–gas-shift reaction,” Chemical Engineering Journal, 2012. [31] 林牧融, “薄膜反應器之水氣轉移反應數值計算,” 成功大學碩士論文,航空太空工程研究所,2008。 [32] O. U. Iyoha, “H2 production palladium & palladium-copper membrane reactors at 1173K in the presence of H2S,” University of Pittsburgh, 2007 [33] J. Li, H. Yoon, T. K. Oh, E. D. Wachsman, “High temperature SrCe0.9Eu0.1O3-δ proton conducting membrane reactor for H2 production using the water–gas shift reaction,” Applied Catalysis B: Environmental Vol.92, pp.234-239, 2009. [34] R. M. Barrer, “Diffusion in and trough solids,” Cambridge university press, London, 1951. [35] N. Itoh, Y. Shindo and K. Haray, “Ideal flow models for palladium membrane reactors,” J. Chem. Eng. Jan., Vol.23, pp.420, 1990. [36] J. M. Moe, “Design of water-gas shift reactors,” Chemical Engineering Progress, Vol.58(3), pp.33, 1962.
摘要: 
本研究以Iyoha博士論文(美國匹茲堡大學,2007年)的研究做為參考基準,進而建立數值模式以分析在高溫高壓下於膜反應器中進行水氣轉移反應等相關效能。膜反應器的操作壓力是在2-19atm,而操作溫度以及進料體積流率分別固定為900℃和200sccm,進料為模擬煤碳氣化的合成氣,故進料組成成分中含有一氧化碳、氫氣、二氧化碳和硫化氫。利用Navier-Stokes equation以及Stenfan-Maxell equation來進行數值模擬求解。在本研究中,對軸對稱之二維模型以及三維模型做深入探討,並與Iyoha研究中的實驗數據做比較驗證。

由數值模擬結果發現,在上述的操作溫度及壓力下,掃氣流量以及膜滲透度為影響膜反應器相當重要的參數條件。滲透端之低掃氣流量,會減少滲透驅動力,而導致一氧化碳轉換率以及氫氣回收率下降。在高的膜滲透度下,可以獲得將近100%的一氧化碳轉換率以及氫氣回收率。然而,高的一氧化碳轉換率,會使得硫化氫與氫氣之莫耳比高於膜所能容忍最低限度值,以致膜的硫化損壞。

在模擬四根膜管之三維膜反應器膜型中,發現一氧化碳轉換率以及氫氣回收率高於Iyoha研究中的實驗數據,其可能原因為數值模擬中忽略物質吸附於膜壁而產生之膜滲透度下降因素。

In this study a numerical model for simulating water gas shift reaction in a membrane reactor was established based on the experimental work reported in the study of Ihayo (PhD thesis, University of Pittsburg, 2007). The operation pressure of the membrane reactor was in the range of 2 to 19 atms while the operation temperature and fed gas mixture flow rate were kept at 900℃ and 200 sccm, respectively. The fed gas mixture was simulated coal-derived syngas containing carbon dioxide (CO), hydrogen (H2), carbon dioxide (CO2), and hydrogen sulfide (H2S). Navier-Stokes equation with varied density and species transport equation described by Stefan-Maxell equation were solved simultaneously. Both Axisymmetric (two-dimensional) and full three dimensional physical domains were considered in this study. The numerical model was verified using the experimental data reported by Ihayo.

From the numerical simulation results, it was found that the sweep gas flow and membrane permeance played important roles in the reactor performance in addition to the operation temperature and pressure. With low sweep gas flow rate in the permeation side, decreases in both CO conversion and H2 recovery were found because of reduction in permeation driving force. For high membrane permeance, almost 100% CO conversion and hydrogen recovery can be obtained. However, high CO conversion also resulted in high H2S-to H2 ratio in the reaction side which may be higher than the thermodynamic equilibrium value for sulfidization to form.

In the full three-dimensional computation with four membrane tubes case, it was found that the numerical model predicted higher CO conversion and H2 recovery as compared with the Ihoya’s experimental data. The reason for this discrepancy may be attributed to the species adsorptions on membrane surface that led to the permeation flux reduction from the reaction side to the permeation side in the experiment.
URI: http://hdl.handle.net/11455/2790
其他識別: U0005-2908201223525200
Appears in Collections:機械工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-101-7099061029-1.pdf1.52 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.