Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2797
DC FieldValueLanguage
dc.contributor戴慶良zh_TW
dc.contributorChing-Liang Daien_US
dc.contributor.author廖維溱zh_TW
dc.contributor.authorLiao, Wei-Zhenen_US
dc.contributor.other機械工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-05T11:43:57Z-
dc.date.available2014-06-05T11:43:57Z-
dc.identifierU0005-2008201315274100en_US
dc.identifier.citation[1] F. Rock, N. Barsan, U. Weimar, “Electronic nose: current status and future trends,” Chemical Reviews, vol. 108, pp. 705-725, 2008. [2] D. James, S. M. Scott, Z. Ali, W. T. O’Hare, “Chemical sensors for electronic nose systems,” Microchimica Acta, vol. 149, pp. 1-17, 2005. [3] J. S. Suehle, R. E. Cavicchi, M. Gaitan, S. Semancik, “Tin oxide gas sensor fabricated using CMOS micro-hotplates and in–situ processing,” IEEE Electron Device Letters, vol. 14, pp. 118-120, 1993. [4] Y. Hua, H. Leeb, S. Kimb, M. Yuna, “Tin oxide gas sensor fabricated using CMOS micro-hotplates and in–situ processing,” Sensors and Actuators B, vol. 181, pp. 424-431, 2013. [5] F. Hossein-Babaei, A. Amini, “A breakthrough in gas diagnosis with a temperature-modulated generic metal oxide gas sensor,” Sensors and Actuators B, vol. 166-167, pp. 419-425, 2012. [6] D. Matataguia, J. Martia, M. J. Fernandeza, J. L. Fontechaa, J. Gutierreza, I. Graciab, C. Caneb, M. C. Horrilloa, “Chemical warfare agents simulants detection with an optimized SAW sensor array,” Sensors and Actuators B, vol. 154, pp. 199-205, 2011. [7] C. Becherb, P. Kaulb, J. Mitrovicsa, J. Warmerb, “ The detection of evaporating hazardous material released from moving sources using a gas sensor network,” Sensors and Actuators B, vol. 146, pp. 513-520, 2010. [8] N. Han, Y. Tiana, X. Wua, Y. Chena, “Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO,” Sensors and Actuators B, vol. 138, pp. 228-235, 2009. [9] L. Francioso, A. M. Taurino, A. Forleo, P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sensors and Actuators B, vol. 130, pp. 70-76, 2008. [10] L. J. Bie, X. N. Yan, J. Yin, Y. Q. Duan, Z. H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sensors and Actuators B, vol. 126, pp. 604-608, 2007. [11] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology, vol. 17, pp. 4995-4998, 2006. [12] N. J. Choi, J. H. Kwak, Y. T. Lima, T. H. Bahnb, K. Y. Yun, J. C. Kima, J. S. Huhd, D. D. Lee, “Classification of chemical warfare agents using thick film gas sensor array,” Sensors and Actuators B, vol. 108, pp. 298-304, 2005. [13] J. Gong, Q. Chena, W. Fei, S. Seal, “Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose,” Sensors and Actuators B, vol. 102, pp. 117-125, 2004. [14] Y. Mina, H. L. Tullera, S. Palzerb, J. Wollensteinb, H. Bottnerb, “Gas response of reactively sputtered ZnO films on Si-based micro-array,” Sensors and Actuators B, vol. 93, pp. 435-441, 2003. [15] D. S. Lee, D. D. Lee, S. W. Ban, M. Lee, Y. T. Kim, “SnO2 gas sensing array for combustible and explosive gas leakage recognition,” IEEE Sensors Journal, vol. 2, pp. 140-149, 2002. [16] Y. Mo, Y. Okawa, M. Tajima, T. Nakai, N. Yoshiike, K. Natukawa, “Micro-machined gas sensor array based on metal film micro-heater,” Sensors and Actuators B, vol. 79, pp. 175-181, 2001. [17] S. Wu, Q. Lin, Y. Yuen, Y. C. Tai, “MEMS flow sensors for nano-fluidic applications,“ Sensors and Actuators B, vol. 89, pp. 152-158, 2001. [18] 曹恆偉、林浩雄、郭建宏、陳建中,微電子電路(上),中華民國,台北市,2004. [19] S. Graffi, G. Masetti, D. Golzio, “New macromodels and measurements for the analysis of EM1 effects in 741 op-amp circuits, “IEEE Transactions on Electromagnetic Compatibility, vol. 33, pp. 25-34, 1991. [20] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkocd, ” A comprehensive review of ZnO materials and devices,” Journal of applied physics, vol. 98, pp. 41301-1-103, 2005. [21] http://el.mdu.edu.tw/datacos//09623112056A/%E5%A5%88%E7%B1%B3%E6%B0%A7%E5%8C%96%E9%8B%85.ppt [22] L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” Journal of American Chemical Society, vol. 113, pp. 2826-2833, 1991. [23] http://www.ch.ntu.edu.tw/~camp/camp99a/doc/exp990701.pdf [24] N. Gospodinova, L. Terlemezyan, “Conducting polymers prepared by oxidative polymerization: polyaniline,” Progress in Polymer Science, vol. 23, pp. 1443-1484, 1998. [25] A. G. Macdiarmida, J. C. Chianga, M. Halperna, W. S. Huanga, S. L. Mua, L. D. Nanaxakkaraa,S. W. Wua, S. Yanigera, ““Polyaniline”: interconversion of metallic and insulating forms,“ Molecular Crystals and Liquid Crystals, vol. 121, pp. 1-4, 1985. [26] 楊固峰,聚苯胺衍生物合成方法之比較:氧化共聚合法及同步還原與取代反應法,國立清華大學化學所博士論文,2005. [27] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Applied Physics Letters, vol. 84, pp. 3655-3656, 2004. [28] 張君豪,以溶膠凝膠法製備氧化鋅奈米結構於半導體型氣體感測器之應用,國立師範大學機電科技學系碩士論文,2008. [29] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Applied Physics Letters, vol. 84, pp. 3655-3656, 2004. [30] S. J. Changa, W. Y. Wenga, C. L. Hsub, T. J. Hsueha, “High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles,” Nano Communication Networks, vol. 1, pp. 283-288, 2010. [31] D. S. Sutar, N. Padma, D. K. Aswal , S. K. Deshpande, S. K. Gupta, J. V. Yakhmi, “Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor,” Sensors and Actuators B, vol. 128, pp. 286-292, 2007. [32] A. Choudhury, “Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity,” Sensors and Actuators B, vol. 138, pp. 318-325, 2009. [33] P. Kara, N. C. Pradhanb, B. Adhikaria, “Application of sulfuric acid doped poly (m-aminophenol) as aliphatic alcohol vapor sensor material,” Sensors and Actuators B, vol. 140, pp. 525-531, 2009. [34] M. C. Carotta, A. Cervia, V. Natalea, S. Gherardi, A. Giberti, V. Guidia, D. Puzzovioa, B. Vendemiatia, G. Martinellia, M. Sacerdoti, D. Calestanic, A. Zappettini, M. Zhac, L. Zanotti, “ZnO gas sensors: A comparison between nanoparticles and nanotetrapods-based thick films,” Sensors and Actuators B, vol. 137, pp. 164-169, 2009. [35] X. L. Cheng, H. Zhao, L.H. Huo, S. Gao, J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property,” Sensors and Actuators B, vol. 102, pp. 248-252, 2004. [36] 詹熾樺,以導電高分子-聚苯胺製做整合型為氨氣感測器,國立中興大學碩士論文,2008. [37] P. P. Sengupta, S. Barik, B. Adhikari, “Polyaniline as a gas-sensor material,” Materials and Manufacturing Processes, vol. 21, pp. 263-270, 2006.en_US
dc.identifier.urihttp://hdl.handle.net/11455/2797-
dc.description.abstract本研究利用氧化鋅以及聚苯胺當作感測薄膜,整合感測電路,製作出微氣體感測陣列用於偵測乙醇及氨氣。製作上利用0.18 CMOS-MEMS製程製作出披覆感測薄膜氧化鋅及聚苯胺之晶片,晶片內有指叉結構感測電極、加熱器以及溫度計,晶片可以提供感測薄膜一個穩定的工作環境。氧化鋅及聚苯胺則是利用溶膠凝膠法調製成溶液後,披覆於晶片上,經過高溫熱退火,即可完成感測薄膜氧化鋅與聚苯胺。感測電路則是利用雕刻機,在印刷電路板上,刻出電路圖後,在匹配好電阻,與晶片相接,即完成微氣體感測陣列。本研究之微氣體感測陣列製作方法容易、低成本且易於大量製作。 微氣體感測陣列在偵測到乙醇時,主要依據氧化鋅感測薄膜的反應,而當在偵測到氨氣時,則以聚苯胺的變化為主。量測結果顯示,氧化鋅在350 ℃下對乙醇有最高的靈敏度,150 ppm下靈敏度有35 %,而室溫下聚苯胺薄膜對150 ppm乙醇的靈敏度只有0.3 %。而350 ℃下氧化鋅對100 ppm氨氣的靈敏度只有2.5 %,遠小於聚苯胺薄膜的25 %,因此藉由比較此兩種薄膜對兩種氣體反應後,所得到的數據資料,即可判斷所偵測到的氣體種類。zh_TW
dc.description.abstractThis study presents the fabrication and characterization of gas sensing microarray for detecting ethanol and ammonia. The microarray uses zinc oxide and polyaniline as sensing materials and integrates the sensing circuits. The gas sensing microarray is fabricated using the commercial 0.18 m CMOS (complementary metal oxide semiconductor) process. The microarray includes interdigitated sensing electrodes, heaters and thermometers. The heaters provide a stable working temperature for sensing films. The sol-gel method is adopted to prepare zinc oxide and polyaniline, and they are coated on the microarray, respectively. The sensing materials are annealed with high temperature. When the sensing materials sense the reaction gas, the resistance of the sensors produces a change. The sensing circuits made on the printed circuit board are utilized to convert the resistance variation of the sensors into the output voltage. The advantages of the gas sensing microarray are easy fabrication, low cost and easy mass productions. The zinc oxide is used to detect ethanol, and the polyaniline is utilized to sense ammonia. The experimental results showed that the zinc oxide at 350 ℃ had the best sensitivity for ethanol, and its sensitivity was 35 % at 150 ppm ethanol. The sensitivity of polyaniline was 25% at 100 ppm ammonia. For gas selectivity, the sensitivity of zinc oxide was only 2.5% at 350 ℃ in 100 ppm ammonia, so the zinc oxide has a good selectivity for ethanol. Therefore, the ethanol and ammonia gas can be known by the sensitivity and selectivity of sensing materials.en_US
dc.description.tableofcontents第一章 緒論................................................................................................................. 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究動機 6 第二章 微氣體感測器陣列之設計..............................................................................7 2.1 微氣體感測陣列構造之設計 7 2.2 晶片內結構之設計 9 2.3 感測電路設計 13 第三章 氧化鋅與聚苯胺薄膜感測乙醇及氨氣之原理............................................16 3.1 感測薄膜氧化鋅與聚苯胺之簡介 16 3.1.1 氧化鋅簡介 16 3.1.2 氧化鋅的製備方法 16 3.1.3 聚苯胺簡介 18 3.1.4 聚苯胺的製備方法 19 3.2 氧化鋅與聚苯胺薄膜感測乙醇及氨氣之原理 21 3.2.1 半導體感測氣體之原理 21 3.2.2 感測薄膜氧化鋅對乙醇及氨氣之吸附機制 23 3.2.3 感測薄膜聚苯胺對乙醇及氨氣之吸附機制 25 第四章 微氣體感測陣列之製作................................................................ ...............26 4.1 微氣體感測陣列製程 26 4.2 感測薄膜製備方法 33 4.2.1 氧化鋅感測薄膜製備方法 33 4.2.2 聚苯胺感測薄膜製備方法 43 第五章 實驗結果與討論...........................................................................................49 5.1 量測架構 49 5.2 晶片內加熱器與溫度計之量測結果 50 5.2.1 晶片內溫度計校正 50 5.2.2 晶片內加熱器量測結果 51 5.3 微氣體感測器陣列對乙醇和氨氣性能之量測 53 5.3.1 電阻式微氣體感測器陣列對乙醇之性能量測 53 5.3.2 電阻式微氣體感測陣列對氨氣之性能量測 60 5.4 微氣體感測陣列感測電路對乙醇和氨氣性能之量測 62 5.5 結果與討論 64 第六章 結論與未來展望............................................................................................65 附錄A 整合電路之微氣體感測陣列.........................................................................66 附錄B 薄膜老化現象................................................................................................75 參考文獻......................................................................................................................77zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201315274100en_US
dc.subjectCMOS-MEMSzh_TW
dc.subjectCMOS-MEMSen_US
dc.subject氣體感測陣列zh_TW
dc.subject氧化鋅zh_TW
dc.subject聚苯胺zh_TW
dc.subject乙醇感測器zh_TW
dc.subject氨氣感測器zh_TW
dc.subjectGas sensing arrayen_US
dc.subjectZinc oxideen_US
dc.subjectPolyanilineen_US
dc.subjectEthanol sensoren_US
dc.subjectAmmonia sensoren_US
dc.title偵測氨氣和乙醇的微氣體感測陣列zh_TW
dc.titleGas Sensing Microarray for Detecting Ammonia and Ethanolen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.