Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2799
標題: 六自由度壓電致動平台之前饋控制器設計
Design of Feed forward Controller for Six-DOFs Micro Piezo Stage
作者: 謝宗廷
Hsieh, Tsung-Ting
關鍵字: 多軸壓電平台;multi-axis piezo stage;遲滯模型;前饋控制;光學量測;hysteresis model;feedforward control;optical measurement
出版社: 機械工程學系所
引用: [1] Peng Gao and Shan-Min Swei, ”A six-degree -of-freedom micro-manipulator based on piezoelectric translators”, Nanotechnology 10, pp.447 452, 1999 [2] C. W. Lee and S. W. Kim, “An ultraprecision stage for alignment of wafers in advanced microlithography”, precision engineering 21, pp. 113-122, 1997 [3] 劉紅忠,丁玉成,李滌塵,盧秉恆,李寒松,“多維微驅動器納米定位系統的研究”,信息與控制第31卷第5期,pp. 446-450,2002 [4] W. J. Kim, “Six-Axis Nano-positioning with Precision Magnetic Levitation”, IEEE-NANO, pp. 174-179, 2001 [5] Shobhit Verma, W. J. Kim, ”Six-Axis Nano-positioning Device With Precision Magnetic Levitation Technology”, IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 9, NO. 2, pp. 384-391, 2004 [6] Masaki Sugiura, Shu Yamamoto, Jun Sawaki, Kouki Matsuse, “The Basic Characteristics of Two-Degree-of-Freedom PID Position Controller Using a Simple Design Method For Linear Servo Motor Drives”, IEEE, AME’96-MIE, pp. 59-64, 1996 [7] H. Zhou, K. K. Tan and T. H. Lee, “Micro-Positioning of Linear Piezoelectric Motors Based on a Learning Nonlinear PID Controller”, Proceedings of 39th IEEE Conference of Decision and Control Sydney, pp. 913-918, 2000 [8] K. K. Tan, T. H. Lee, “Micro-Positioning of Linear-Piezoelectric Motors Based on a Learning Nonlinear PID Controller”, IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 6, NO. 4, pp. 428-436, 2001 [9] C. Canudas de Wit, H. Olsson, K. J. Astrom, P. Lischinsky, “A New Model for Control of Systems with Friction”, IEEE Transactions of automatic control, vol. 40, No. 3, pp. 419-425, 1995 [10] T. Y. Lin, Y. C. Pan, C. Hsieh, “Precision-limit positioning of direct drive systems with the existence of friction”, Control Engineering Practice 11, pp. 233–244, 2003 [11] D. Croft, and S. Devasia, “Hysteresis and vibration compensation for piezoactuators”, Journal of Guidance, Control and Fynamics, Vol. 21, pp. 710-717, 1998 [12] T. S. Low, and W. Guo, “Modeling of a three-layer piezoelectric bimorph beam with Hysteresis”, Journal of microelectromechanical system, Vol. 4, No. 4, pp. 230-237, 1995 [13] Han J. M. T. A. Adriaens, Willem L. de Koning, and R. Banning, “Modeling piezoelectric actuators”, IEEE/ASME Transactions on mechatronics, Vol. 5, No. 4, pp. 331-341, 2000 [14] Reinder Banning, Willem L. de Koning, Han J. M. T. A. Adriaens, Richard K. Koops, “State-space analysis and identification for a class of hysteretic systems”, Automatica 37, pp. 1883-1892, 2001 [15] J. D. Kim, and S. R. Nam, “A piezoelectrically driven micro-positioning system for the ductile-mode grinding of brittle materials”, Journal of Materials Processing Technology 61, pp. 309-319, 1996 [16] M. Goldfarb, and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation”, IEEE Control Systems Magazine, Vol. 17, pp. 69-79, 1997 [17] P. N. Sreeram, G. Salvady, and N. G. Nagnatham, “Hystersis prediction for a piezoceramic material system”, In Proceedings of the 1993 ASME Winter Annual Meeting New Orleans, Vol. 35, New Orleans, La, USA, ASME Aerospace Division, pp. 35-42, 2001 [18] K. C. FAN, M. J. CHEN, and W. M. HUANG, “A SIX-DEGREE-OF-FREEDOM MEASUREMENT SYSTEM FORTHE MOTION ACCURACY OF LINEAR STAGES”, Mach. Tools Manufact, Vol. 38, No. 3, pp. 155–164, July, 1998 [19] Neville K. S. Lee, Yimin Cai, Ajay Joneja, “High-resolution multidimensional displacement monitoring system”, Optical Engineering, Vol. 36 No. 8, August, 1997 [20] Jong-Ahn Kim, Kyung-Chan Kim, Eui Won Bae, Soohyun Kim, and Yoon Keun Kwak, ”Six-degree-of-freedom displacement measurement system using a diffraction grating”, REVIEW OF SCIENTIFIC INSTRUMENTS, Vol 71,No 8, AUGUS, 2000 [21] Jong-Ahn Kim, Eui Won Bae, Soo Hyun Kim, Yoon Keun Kwak, “Application of sensitivity analysis for the design of six-degree-of-freedom measurement system”, Optical Engineering, Vol. 40 No. 12, December, 2001 [22] Jong-Ahn Kim, Eui Won Bae, Soo Hyun Kim, Yoon Keun Kwak, ”Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets”, Precision Engineering, NO 99–104, August, 2001 [23] Chien-Hung Liu, Wen-Yuh Jywe, Chao-Kwai Chen, ”Development of a simple system for the simultaneous measurement of pitch, yaw and roll angular errors of a linear stage”, Adv Manuf Technol, 26: 808–813, April, 2004 [24] Hsueh-Liang Huang, Chien-Hung Liu, Wen-Yuh Jywe, Ming-Shi Wang, and Te-Hua Fang, ”Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage", REVIEW OF SCIENTIFIC INSTRUMENTS 78, June, 2007 [25] Wei Gaoa, Shuichi Dejima, Hiroaki Yanai, Kei Katakura, Satoshi Kiyono, Yoshiyuki Tomita, “A surface motor-driven planar motion stage integrated with an XYθZ surface encoder for precision positioning”, Precision Engineering 28, December, 2004 [26] W. Gao, S. Dejima, S. Kiyono, “A dual-mode surface encoder for position measurement”, Sensors and Actuators A 117,July, 2005 [27] Shuichi Dejima, Wei Gao, Hiroki Shimizu, Satoshi Kiyono , Yoshiyuki Tomita, “Precision positioning of a five degree-of-freedom planar motion stage”, Mechatronics 15, March, 2005 [28] Akihide Kimura, Wei Gao, Yoshikazu Arai, Zeng Lijiang, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness”, Precision Engineering 34, July, 2010 [29] J. C. Shen, W. Y. Jywe, Q. Z. Lu and C. H. Wu, “Control of a High Precision Positioning Stage”, 7th IEEE Conference on Industrial Electronics and Applications, 2012 [30] 鄭仲翔,「應用於工具機誤差檢測之多自由度雷射光學尺研製」,國立虎尾科技大學光電與材料科技研究所碩士論文,中華民國一百年七月。 [31] 李浩瑋,「奈米測量機Z-Tilts誤差補償平台之設計、量測與循跡控制」,建國科技大學機電光系統研究所碩士論文,中華民國九十四年七月。 [32] 莊國元,「六自由度壓電微動平台量測系統開發」,國立虎尾科技大學光電與材料科技研究所碩士論文,中華民國一百零一年七月。 [33] 李柏均,「基於摩擦遲滯模型之順滑模態控制應用於多軸壓電奈米定位平台」,國立臺灣大學工學院機械工程學研究所碩士論文,中華民國九十七年六月。 [34] 劉安航,「微動平台控制系統之模擬與分析」,國立中興大學機械工程研究所碩士論文,中華民國九十八年一月。
摘要: 
本論文主要針對一六自由度微動壓電平台進行定位誤差補償。平台可以產生X Y Z軸方向的線性位移與繞X Y Z軸旋轉的角度位移。微動平台使用壓電陶瓷材料作為致動器,因為壓電材料本身存在遲滯效應,其作動時會有10%至15%的誤差產生。本研究經由實驗可得到壓電致動器的遲滯參數,建構出對應的遲滯模型。利用PI控制器與遲滯模型進行前饋控制,使平台達到奈米級的定位精度。
平台內部設置多組光學量測模組,此量測模組分別由四象限光電感測器、雷射二極體與聚焦透鏡所組成,為一套高靈敏、高解析的量測系統。此系統可同時進行多自由度量測,再搭配FPGA的快速I/O擷取與運算功能可以即時將量測訊號回授,完成平台定位控制。
平台的最大線性位移為16μm,定位誤差約為0.1μm,最大旋轉角度θX、θY軸40 arc sec,θZ軸23 arc sec,角度誤差在±0.5 arc sec內。

The purpose of this research is to compensate for positioning error of a six-DOFs micro piezo stage. The stage can achieve three linear displacements( X, Y, Z axes) ,and three angular displacements( θx, θy, θz axes). The micro positioning stage using piezoelectric ceramic materials as an actuator, because of the inherent hysteresis of piezoelectric material, which will be result in error around 10-15%. In this study, the hysteresis parameter of piezo actuator can be obtained by experiment, and then the corresponding hysteresis model can be established. Using PI controller and hysteresis model to do feedforward control, and the stage can achieve nanometer-accuracy position.
Set multiple optical measurement modules on interior of stage. This measurement modules composed of quadrant photodiode, laser diode and convex, is a set of high-sensitivity, high-resolution measurement system.
The system can measure multi-freedom-degree at the same time, and be used with FPGA for real-time feedback signal. Then we will complete the positioning control.
The stage can achieve maximum linear displacement of 16μm, and the positioning error is less than 0.1μm. Maximum rotational displacement of θX, θy is 40 arc sec, θz is 23 arc sec, and the positioning error is in ±0.5 arc sec.
URI: http://hdl.handle.net/11455/2799
其他識別: U0005-2208201317431700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.