Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28005
標題: 土壤中優勢流動路徑的辨認與分析
Identification and analysis of preferential flow paths in soils
作者: 黃俊騰
Huang, Jun-Teng
關鍵字: 土壤;soil;優勢流動;碎形;銹斑;preferential flow;fractal;mottle
出版社: 土壤環境科學系所
引用: 一、 中文部分 (一) 圖書 郭魁士。1997修訂八版。土壤學。中國書局。台北縣。 趙羿、賴明洲、薛怡珍。2003。景觀生態學理論與實務。地景企業。台北市。 廖思善。2006。動手玩碎形。天下遠見。台北市。 謝兆申、王明果。1995。土壤調查技術手冊。國立中興大學土壤調查試驗中心。台中市。 (二) 期刊論文 林裕彬、鄧東波、張尊國。2004。以景觀生態方法分析桃園台地埤塘變遷之研究。桃園大圳水資源暨營運管理學術研討會論文集 p.493-528。 張簡水紋。2000。土壤pH維空間變異之探討。國立中興大學土壤環境科學系博士論文。 陳義裕,演講。梁雲芳,撰文。2003。碎形─奇怪的形狀,無窮的應用。科學發展。370:48-53。 二、 西文部分 (一) Books Baveye, P., J.-Y. Parlange, and B.A. Stewart. 1998. Fractals in soil science. CRC Press, Boca Raton, Boston, London, New York, Washington, D.C. Bolt, G.H. and M.G.M. Bruggenwert. 1976. Soil chemistry. Part A. Basic Elements. Elsevier, Amsterdam, The Netherlands. Gardner, W., W.A. Jury, and R. Horton. 2004. Soil physic. 6th Edition. John Wiley and Sons. Gleick, J. 1987. Chaos─Making a New Science. Penguin Books Press. 林和,譯。1991。混沌─不測風雲的背後。天下文化。 Hillel, D. 1979. Fundamentals of Soil Physics. 萬鑫森,譯。1987。基礎土壤物理學。國立編譯館。 Hillel, D. 1998. Environmental soil physics. Academic Press, San Diego, CA. Jury, W.A., W.R. Gardner, and W.H. Gardner. 1991. Soil physics. 5th Edition. John Wiley and Sons. Killham, Ken. 1999. Soil ecology. 4th Edition. Cambridge University Press. Mandelbrot, B.B. 1986. Self-affine fractals sets. p. 3-28. In L. Pietronero and E. Tossati (eds.) Fractals in physics. North-Holland. Amsterdam. Miyazaki, T., S. Hasegawa, and T. Kasubuchi. 1993. Water flow in soils. Marcel Dekker, Inc., New York. Plaster, Edward J. 1997. Soil science and management. 3rd Edition. Delmar Press. Peitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe. 1992. Chaos and Fractals. New Frontiers of Science. Springer-Verlag, New York. Peitgen, H.-O., H. Jürgens, and D. Saupe. 1992. Fractals for the classroom Part One Introduction to Fractals and Chaos. Springer-Verlag, New York. Peitgen, H.-O., and P.H. Richter. 1986. The beauty of fractals – Images of complex dynamical system. Springer-Verlag, Berlin. 井竹君、章祥蓀,譯。1994。分形:美的科學─復動力系統圖形化。科學。北京市。 Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and W.D. Broderson. 1998. Field book for describing and sampling soils. V. 1.1. National Soil Survey Center. Natural Resources Conservation Service. U.S.D.A. Lincoln, Nebraska. Scott, H.D. 2000. Soil Physics – Agricultural and Environmental Applications. Iowa State University Press. Ames. (二) Journal Articles Bastiaanssen, W.G.M., D.J. Molden, and I.W. Makin. 2000. Remote sensing for irrigated agriculture: examples from reseach and possible applications. Agricultural Water Management 46:137-155. Ben Ohoud, M. and H. Van Damme. 1990. The fractal texture of swelling clays. C.R. Acad. Sc., Paris, 311, series II:665-670. Bird, N., E. Perrier, and M. Rieu. 2000. The water retention curve for a model of soil structure with pore and solid fractal distributions. Eur. J. Soil Science. 55:55-63. Brunskill, G.J. and S.D. Ludlam. 1988. The variation of annual 210Pb flux to varved sediments of Fayetteville Green Lake, New York from 1885 to 1965. Verh. Int. Verein. Limnol. 23:848– 854. Bundt, M., A. Albrecht, P. Froidevaux, P. Blaser, and H. Flühler. 2000. Impact of preferential flow on radionuclide distribution in soil. Environmental Science. Technol. 34:3895–3899. Bundt, M., F. Widmer, M. Pesaro, J. Zeyer, P. Blaser. 2001. Preferential flow paths: biological hot spots in soils. Soil Biology & Biochemistry 33: 729-738. Coats, K. H. and B. D. Smith. 1964. Dead-end pore volume and dispersion in porous media. Soc. Petrol. Engineer Jour. 4:73-84. Cote, C.M., K.L. Bristow, and P.J. Ross. 2000. Increasing the efficiency of solute leaching: impacts of flow interruption with drainage of the “preferential flow paths”. Journal of Contaminant Hydrology 43:191-209. Delahaye, C.H., E.E. Alonso. 2002. Soil heterogeneity and preferential paths for gas migration. Engineering Geology 64:251-271. Dust, M., N. Baran, G. Errera, J.L. Hutson, C. Mouvet, H. Schäfer, H. Vereecken, A. Walker. 2000. Simulation of water and solute transport in field soils with the LEACHP model. Agricultural Water Management 44:225-245. Ghodrati, M. and W.A. Jury, 1992. A field study of the effects of water application method and surface preparation method on preferential flow of pesticides in unsaturated soil. J. Contaminant Hydrology 11:101-125. Hagedom, F., M. Bundt. 2002. The age of preferential flow paths. Geoderma 108:119-132. Haria, A.H., A.C. Johnson, J.P. Bell and C.H. Batchelor. 1994. Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow processes. J. Hydrology 163:203-216. Ju, S.-H., and K.-J.S. Kung. 1993. Finite element simulation of funnel flow and overall flow property induced by multiple soil layers. J. Environ. Qual. 22:432-442. Ju, S.-H., and K.-J.S. Kung. 1997. Steady-state funnel flow: its characteristics and impact on modeling. Soil Sci. Soc. Am. J. 61:416-427. Kung, K.-J.S. 1990. Preferential flow in sandy vadose zone. 2. Mechanism and implications. Geoderma 46: 59-71. Lee, J., R. Horton, K. Noborio, D.B. Jaynes. 2001. Characterization of preferential flow in undisturbed, structured soil columns using a verical TDR probe. Jounal of Contaminant Hydrology 51 :131-144. Meakin, P. 1989. Fractals and disorderly growth. J. Mater. Educ. 11:105-167. Perfect, E., and B.D. Kay. 1991. Fractal theory applied to soil aggregation. Soil Sci. Soc. Am. J. 55:1552-1558. Perrier, E., N. Bird, and M. Rieu. 1999. Generalizing the fractal model of soil structure: The PSF approach. Geoderma 88:137-164. Rasmuson, A. and I. Neretnieks. 1980. Exact solution of a model for diffusion in particles and longitudinal dispersion in packed beds. A.I.Ch.E. Journal 26:686-690. Riesen, T.K., S. Zimmermann, P. Blaser.1999. Spatial distribution of 137Cs in forest soils of Switzerland. Water, Air, Soil Pollut. 114:277–285. Ritsema C.J., L.W. Dekker. 2000. Preferential flow in water repellent sandy soils: principles and modeling implications. Journal of Hydrology 231-232:308-319. Santschi, P.H., S. Bollhalder, K. Farrenkothen, A. Lück, S. Zingg, M. Sturm. 1988. Chernobyl radionuclides in the environment: tracers for the tight coupling of atmospheric, terrestrial, and aquatic geochemical processes. Environ. Sci. Technol. 22:510– 516. Smith, J.T., P.G. Appleby, J. Hilton, N. Richardson. 1997. Inventories and fluxes of 210Pb, 137Cs, and 241Am determined from soils of three small catchments in Cumbria, UK. J. Environ. Radioact. 37:127–142. van Genuchten, M. Th. and P. J. Wierenga. 1976. Mass transfer studies in sorbing porous media: 1. analytical solutions. Soil Sci. Soc. Am. J. 40:473-481. von Gunten, H.R. and R.N. Moser. 1993. How reliable is the 210Pb dating method? Old and new results from Switzerland. J. Palaeolimnol. 9:161– 178. Wang, K., R. Zhang, and F. Wang. 2005. Testing the pore-solidmodel for the soil water retention function. Soil Sci. Soc. Am. J. 69:776-782.
摘要: 
土壤中的優勢流動使得許多土壤中的溶質,如肥料、農藥、和許多污染物,能快速的通過具有濾除和分解功能的土體而進入地下水層中,導致地下水受到污染,危害飲用水質與人體健康。然而,目前並無簡便且快速的方法可供定量描述土壤中之優勢流動路徑,以供瞭解優勢流動在整個土體中的分佈網絡,並做為推估優勢流動對土壤中溶質移運速度影響之參考。
本研究主要探討以土壤中的銹斑作為代表土壤中優勢流動路徑的可行性。利用於田間採集之未破壞的土柱進行染劑流佈試驗,再將土柱逐層切片並攝影,以確認土壤銹斑空間分佈與土壤優勢流動路徑間具有緊密之關聯。並以碎形(Fractal)的概念計算土柱各層切片被染色之銹斑的碎形維度,探討土柱中可能之優勢流動路徑的立體分佈。目前已建立有關土柱前處理、染劑流佈、土柱切片與攝影、影像處理與分類、碎形維度計算等作業的標準流程,並以兩處長期種植水稻之試驗樣區採集的底土土柱為樣品,進行相關試驗。
研究結果指出,對土柱樣品所進行的染劑流佈試驗,染劑主要出現於銹斑所在位置;顯微攝影則確認土壤中銹斑所在位置的土壤顆粒偏粗,且銹斑之空間分佈與粗顆粒(孔隙大)之空間分佈也頗為近似。由土柱各層切面碎形維度分析,並與染色切面配合比對,得知可由碎形維度之立體分佈發現受試土柱中限制水分流動的收縮點或瓶頸點的位置。因此,本論文初步證實應用土壤中自然存在之銹斑特徵,可作為土壤中優勢流動路徑之代表;土柱中被染色區域之碎形維度的3D空間分佈資訊,則可作為探討土壤中優勢流動路徑空間分佈的依據。

Preferential flow is an important mechanism which makes fertilizers, pesticides, and many other contaminants to bypass main soil body, with functions of filtration and decomposition, and arrive at groundwater rapidly. The pollutants can endanger the quality of drinking water and public health. However, there are still lacking methods which are not only easy to implement but also can identify preferential flow paths in soils for further studies to quantitatively describe the distribution network of preferential flow within soil body and to estimate the possible effects of preferential flow on solute transport accordingly.
The major goal of this study was to explore the feasibility of using mottles in soils as a substitute for preferential flow paths in soils. Undisturbed soil columns collected from fields were first infiltrated by dye solution. Then, the soil columns were cut layer by layer with photographs taken to identify the connections between mottles and preferential flow paths. Fractal dimension of stained mottles in each layer were also calculated to explore the possible 3D distribution of preferential flow paths in the soil columns. Standard procedures regarding preparation of soil columns, dye infiltration, soil layer cutting and photographing, image processing and classification, and fractal dimension computing were all established. Subsoil columns taken from two long-term rice cultivation sites were used in this study.
Results indicated that dye mainly appeared at mottled area. Microscopic photographs also confirmed that particle size at mottles was leaning to be coarse. The spatial distributions of mottles and coarse particles (macropore) were approximate. Comparing the results of fractal-dimension analysis of stained layers with dye-stained images exposed places where constrictions and necks might present. Therefore, mottles existing naturally in soils can be regarded as substitutes for preferential flow paths in soils has been tentatively verified in this thesis. The 3D information of stained layers of a soil column can be used as the basis to explore the preferential flow paths.
URI: http://hdl.handle.net/11455/28005
其他識別: U0005-0702200713113400
Appears in Collections:土壤環境科學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.