Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28059
標題: 南投名間地下水NO3-之來源與轉化
Sources and Transformations of NO3- in Groundwater of Ming-jian, Nantou
作者: 董奇矗
Tung, Chi-Chu
關鍵字: 名間;Ming-jian;地下水;氮氧同位素;NO3-污染;groundwater;nitrogen and oxygen isotope;NO3- pollution
出版社: 土壤環境科學系所
引用: 1.中興大學農學院土壤系,1976。台中縣、南投縣土壤調查報告。中 興大學農學院土壤系。 2.中央氣象局,2004~2005。日月潭、集集、埔中、六分寮測站溫度、雨量資料。 3.中央地質調查所,1996。台灣區地下水觀測網計劃。中央地質調查所。 4.台灣肥料股份有限公司,肥料教室。 http://www.taifer.com.tw。 5.行政院環保署,2005。飲用水水質標準、飲用水水源標準。 6.行政院環保署,2004~2005。環境水質監測網。http://wq.epa.gov.tw/wq/Public2/ImageBasin.asp。 7.行政院環保署環境檢驗所,2006。水質檢測方法彙編。 http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER。 8.名間鄉公所,2004。名間鄉志。第26-306頁。 9.郭魁士,1974。土壤學。中國書局。第101-113頁。 10.南投縣政府主計室,2003-2005。南投縣統計要覽。 11.范家華,2005。梨山農作區水體之水化學及硝酸鹽的氮氧同位素研究。中興大學土壤環境科學系碩士論文。第26-122頁。 12.財團法人中華工程顧問司,1994。東西向快速公路漢寶草屯線新闢工程-八卦山隧道地質分析及評估報告,CECI GD-502。 13.徐貴新,1998。水質分析實驗。高立出版社。第145-210頁。 14.陳文福、林文勝、張國強、秦啟文、蔡克敏。2003。彰雲地下水補注區之溶氧與硝酸鹽氮濃度。經濟部中央地質調查所彙刊第十六號。第125-139頁。 15.陳文福,2005。台灣的地下水。遠足出版社。第114-115頁。 16.彭宗仁,2003。梨山地滑區地下水之水文同位素初步探討。國立中興 大學土壤環境科學系報告。第11-14頁。 17.彭宗仁、詹婉君、林毓雯、劉黔蘭,2004。由氮同位素評估南投地區河水中NO3-之來源及轉化。土壤與環境。第七卷,第三期。第167-182頁。 18.楊建一、徐慶雲、李坤松,1984。台灣中部第三紀地層與儲油氣潛能之研究。中油臺探總處七十三年度專題研究報告。 19.經濟部水資源局,2001。台灣地區地下水觀測網水質監測調查分析(3/5)。經濟部水資源局。第69頁。 20.經濟部水利署,2005。水文水資源資料管理供應系統。 http://gweb.wra.gov.tw/wrweb/。 21.詹婉君,2003。南投地區地表水之水化學及氮同位素特徵研究。中興大學土壤環境科學系碩士論文。第81-85頁。 22.賴耿陽,1995。水質分析檢測實務。復漢出版社。第43-45頁。 23.謝永旭、蘇苗彬,1996。台灣地區地下水觀測網第一期計劃觀測網之建立及運作管理:濁水溪沖積扇及屏東平原地下水基本水質試驗分析之研究。經濟部水利署。第26-30頁。 24.Amberger, A., and Schmidt, H. L., 1987. Naturliche Isotopengehalte von nitrat als indikatoren für dessen herkunft. Geoch. Cosmo. Acta. Vol. 51, pp. 2699-2705. 25.Andersson, K. K., and Hooper, A. B., 1983. O2 and H2O and each the source of one O in NO2 produced from NH3 by Nitrosomonas:15N evidence. FEBS Letters, Vol. 164, pp. 236-240. 26.APHA, AWWA and WEF., 1992.Standard Methods for the Examination of Water and Wastewater, 18th Edition. Washington D. C. 27.Aravena, R., Evans. M. L., and Cherry, J. A., 1993. Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water, Vol. 31, pp. 180-186. 28.Aravena, R and Robertson, W. D., 1998. Use of multiple isotope tracers to evaluate denitrification in griund water:study of nitrate from a large-flux septic system plume. Ground Water. Vol. 36. no.6, pp. 975-982. 29.Beller, H. R., V. Madrid., G. Bryant Hudson., W. W. McNab and T. Carlsen., 2004. Biogeochemistry and natural attenuation of nitrate in groundwater at an explosives test facility. Appl. Geochem. Vol. 19, pp. 1483-1494. 30.Blackmer, A. M., and J. M. Bremner, 1977. Nitrogen isotope discrimination in denitrification of nitrate in soils. Soil Biol. Biochem. Vol. 9, pp.73-77. 31.Böhlke, J. K., Eriksen, G. E., and Revesz, K. 1997. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A. Isot. G EOS., Vol. 136, pp. 135-152. 32.Böttcher, J., O. Strebel., S. Voerkelius and Schmidt H.L., 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. Vol. 114, pp. 413-252. 33.Bryan, B. A., Shearer, G., Skeeters, J. L., Kohl, D. H., 1983. Variable expression of the nitrogen isotope effect associated with denitrification of nitrate. J. Biol. Chem. Vol. 258, pp. 8613-8617. 34.Cey, E. E., Rudolph, D. L., Aravena, R., Parkin, G., 1999. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J. Contam. Hydrol. Vol. 37, pp. 45-67. 35.Chang, C. C. Y., J. Langston, M. Riggs, D. H. Campbell, S. R. Silva and C. kendall., 1999. A method fir nitrate collection for δ15N and δ18O analysis from waters with low nitrate concentration. Can. J. Fish. Aquat. Sci. Vol. 56, pp.1856-1864. 36.Chapelle F. H, 2001. Ground water microbiology and geochemistry. John Wiley&Sons, Inc. 37.Chen W. F and Liu T. K., 2003. Dissolved oxygen and nitrate of groundwater in Choshui Fan-delta, weatern Taiwan. Env. Geol., Vol. 44, pp. 731-737. 38.Comly, H. H., 1945. Cyanosis in infants caused by nitrates in well water. J. Am. Med. Assoc. 129, 112. 39.Delwiche, C. C., and P. L. Steyn, 1970. Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci Technol., Vol. 4, pp. 929-935. 40.Devito, K. J., Fitzgerald, D., Hill, A. R and Aravena, R., 2000. Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone. J. Environ. Qual. Vol.29, pp. 1075-1084. 41.Feast, N. A., K. M. Hiscock., P. F. Dennis., and J. N. Andrews., 1998. Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. J. Hydrol. Vol. 211, pp. 233-252 42.Fukada, T., K. M. Hiscock., P. F. Dennis., and T. Grischek., 2003. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res. Vol.37, pp.3070-3078. 43.Fukada, T., K. M. Hiscock and P. F. Dennis., 2004. A dual-isotope approach to the nitrogen hydrochemistry of an urban aquifer. Appl. Geochem. Vol. 19, pp. 709-719. 44.Fogg, G.E., Rolston D.E., Decker D.E., Louie D.T and Grismer M.E., 1998. Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Ground Water, Vol. 36, pp. 418-426. 45.Frind, E. O., W. H. M. Duynissveld., O. Strebel and J. Böttcher., 1990. Modelling of multicomponent transport with microbial transformation in groundwater: The Fuhrberg case. Water Resour. Res. Vol. 26. no.8, pp. 1707-1719. 46.Gillham, R. W and J. A. Cherry., 1978. Field evidence of denitrification in shallow groundwater flow system. Water Pollut. Res. Can. Vol. 13. no. 1, pp. 53-71. 47.Heaton, T. H. E., 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol. Vol. 59, pp. 87-102. 48.Hill, A. R., 1996. Nitrate removal in stream riparian zones. J. Environ. Qual. Vol. 25, pp. 743-755. 49.Hiscock, K. M., Dennis, P. F., Feast, N. A., Fairbairn, J. D., 1997. Experience in the use of stable nitrogen isotopes to distinguish groundwater contamination from leaking sewers in urban areas, Chilton J., (Ed.), Groundwater in the Urban Environment: Problems, Processes and Management, A. A. Balkema, Rotterdam, pp. 427-432. 50.Hollocher, Y. C. 1984. Source of oxygen atoms in nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Arch. Biochem. Biophys. Vol. 233, pp. 721-727. 51.Horibe, Y., Shigehara, K., and Takakuwa, Y., 1973. Isotopic separation factors of carbon-dioxide-water system and isotopic composition of atmospheric oxygen. J. Geophys. Res. Vol. 78, pp. 2625-2629. 52.Hudak, P. F., 2000. Regional trends in nitrate content of Texas groundwater. J. Hydrol. Vol. 228, pp. 37-47. 53.Ii, H., T. Hirata., H. Matsuo., M. Nishikawa., N. Tase., 1997. Surface water chemistry, particularly concentrations of NO3- and DO and δ15N values, near a tea plantation in Kyushu, Japan. J. Hydrol. Vol. 202, pp. 341-352. 54.Karr, J. D., W. J. Showers., J. W. Gilliam and A. S. Andres., 2001. Tracing nitrate transport and environmaent impact from intensive swine farming using delta N-15. J. Environ. Qual. Vol. 30, pp.1163-1175. 55.Kendall, C. and E. A. Caldwell., 1998. Fundamentals of Isotope Geochemistry, In: Kendall, C and J. J. McDonnell(eds), ch. 2. Isotope Tracers in Catchment Hydroligy. Elservier, Amsterdam. pp.51-86. 56.Knowles, R. 1982. Denitrification. Microbiol. Rev. Vol. 46, pp. 43-70. 57.Kölle, W., P. Werner., O. Strebel and J. Böttcher., 1983. Denitrification by microbial pyrite in a reducing aquifer (in German). Vom Wasser. Vol. 61. no. 1, pp. 125-147. 58.Kölle, W., O. Strebel and J. Böttcher., 1985. Fromation of sulfate by microbial denitrification in a reducing aquifer. Water Supply. Vol 3. no. 1, pp. 35-40 59.Kohl, D. H., and G. Shearer., 1980. Isotopic fractionation associated with symbiotic N2 fixation and uptake of NO3- by plants. Plant Physiol. Vol. 66, pp. 51-56. 60.Kreitler, C. W. and Jones, D. C., 1975. Natural Soil Nitrate: The cause of the nitrate contamination of ground water in Runnels country, Texas. Ground Water, Vol. 13, no.1, pp. 1-9. 61.Kroopnick, P. M., and H. Craig, 1972. Atmospheric oxygen: Isotopic composition and solubility fractionation. Scuence, Vol. 175, pp. 54-55. 62.Kumar, S., D. J. D. Nicholas, and E. H. Williams, 1983. Definitive 15N NMR evidence that water serves as a source of ‘O’ during nitrite oxidation by Nitrobacter agilis FEBS Letters, Vol. 152, pp. 71-74. 63.Lajtha, K. and Marshall, J. D., 1994. Sources of variation in the stable isotopic composition of plants. Pp. 1-21 In: K. Lajtha and R. H. Michener (editors). Stable Isotopes In Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, 316p. 64.Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P. Letolle, R., Tardieux, A., and Tardieux P., 1981. Experimental determination of nitrogen kinetic isotope fractionation: some principle; illustration for the denitrification and nitrification processes. Plant Soil. Vol. 62, pp. 413-430. 65.Mariotti, A., Germon, J. C., and Leclerc, A., 1982. Nitrogen isotope fractionation associated with the NO2-N2O step of denitrification in soils. Can. J. Soil Sci. Vol. 62, pp. 227-241. 66.Mariotti, A., Landreau, A., and Simon, B., 1988. 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern Frances. Geochim. Cosmochim. Acta. Vol. 52, pp.1869-1878. 67.Mayer, B., Bollwerk S.M., Mansfieldt T., Hütter B and Veizer J., 2001. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim. Cosmochim. Acta. Vol. 65, pp. 2743-2756. 68.Mengis, M., Schiff, S. L., Harris. M., English, M. C., Aravena, R., Elgood, R. J and MacLean, A., 1999. Multiple geochemical and isotope approaches for assessing ground water NO3- elimination in a riparian zone. Ground Water. Vol. 36, pp. 448-457. 69.Mengis, M., Walther U., Bernasgoni S.M and Wehrli B., 2001. Limitations of using δ18O for the source identification of nitrate in agricultural soils. Environ. Sci. Technol.. Vol. 35, pp. 1840-1844. 70.Mohamed, M. A. A., H. Terao., R, Suzuki., I. S. Babiker., K, Ohta., K. Kaori and K. Kato., 2003. Natural denitrification in the Kakamigahara groundwater basin, Gigu prefecture, central Japan. Sci. Total. Environ. Vol. 300, pp. 191-201. 71.Mosier, A. R., and D. S. Schimel, 1993. Nitrification and denitrification, In: Knowels, R., and T. H. Blackburn(Eds). Nitrogen Isotope Techniques. Academic Press, pp. 181-208. 72.Nadelhoffer, K. J. and B. Fry, 1994. Nitrogen isotope studies in forest ecosystems. In: Lajtha, K. and R. Michner(Eds). Stable Isotopes in Ecology and Environmental Science. Blackwell, Oxford, pp. 22-45. 73.Nolan, B. T., 2001. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow groundwater of the United States. Ground water. Vol. 39, pp. 290-229. O’Connell, T. C., Neal K and Hedges R.E.M., 2001. Isolation of urinary urea for natural abundance nitrogen isotopic analysis. Stable Isotope Mass Spectrometry Users Group Meeting, SUERC, Glasgow, January. 74.Oakes, D., 1991. Nitrate in water. In: Hill, M. J. (ed), ch. 2. Nitrate and Nitrite in Food and Water. Ellis Horwood. 75.Oren, O., Y. Yechieli., J. K. Böhlke and A. Dody., 2004. Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel. J. Hydrol. Vol. 290, pp. 312-328. 76.Panno, S. V., K. C. Hackley., H. H Hwang and W. R. Kelly., 2001. Determination of the sources of nitrate contamination in karst spring using isotopic and chemical indicators. Chem. Geol. Vol. 179, pp. 113-128. 77.Pauwels, H., Foucher, J. C., and Kloppmann, W., 2000. Denitrification and mixing in a schidt aquifer: influence on water chemistry and isotopes. Chem. Geol. Vol. 168, pp. 307-324. 78.Peterson, T. W. and J. H. Seinfeld, 1979. Sulfate and Nitrate Level in Aqueous, Atmospheric Aerosols, Nitrogenous Air Pollution:Chemical and Biological Implicational, Ann Arbor Science, pp. 259-268. 79.Piper., A. M., 1994. A graphic procedure in the geochemical interpretation of water analysis. Transactions, American Geophysical Union. Vol. 25, pp. 914-923. 80.Seiler, R. L., 2005. Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Appl. Geochem. Vol. 20, pp. 1626-1636. 81.Rivers, C. N., Barrett, M. H., Hiscock, K. M., Dennis, P. F., Feast, N. A., Lerner, D. N., 1996. Use of nitrogen isotopes to identify nitrogen contamination of the 82.Sherwood sandstone aquifer beneath the city of Nottingham, United Kingdom. Hydrogeol. J. Vol. 4, pp. 90-102. 83.Shear, J. A. and E. R. DeBruyn., 1986. Photoplankton productivity responses to direct addition of sulfuric and nitric acids to the waters of a double-basin lake. Water, Air, Soil Pollu. Vol. 30, pp.695-702. 84.Silva, S. R., C. Kendall, D. H. Wilkison, A. C. Ziegler, C. C. Y. Chang, and R. J. Avanzino., 2000. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J. Hydrol. Vol. 228, pp. 22-36. 85.Silva, S. R., P. B. Ging, R. W. Lee, J. C. Ebbert, A. J. Tesoriero and E. L. Inkpen., 2002. Forensic applications of nitrogen and oxygen in isotopes in tracing nitrate sources in urban environments. Environ. Forensics, Vol.3, pp. 125-130. 86.Skerman, V. B. D., MacRae, I. C., 1957. The influence of oxygen availability on the degree of nitrate reduction by Pseudomonas denitrification. Can. J. Microbiol. Vol. 3, pp. 505-530. 87.Smith, R. L., Howes, B. L and Duff, J. H., 1991. Denitrification in nitrate-contaminated groundwater: occurrence in steep vertical geochemical gradients. Geochim. Cosmochim. Acta. Vol. 55, pp. 1815-1825. 88.Thomasson, A. J., Bouma. J and Leith. H., 1991. Soil and Groundwater Research Report. II. Nitrate in Soils. (eds). EUR13501 Office for Official Publication of the Eurpean Communities, Luxembourg. Pp. 544. 89.Thorburn, P. J., J. S. Biggs., K. L. Weier and B. A. Keating., 2003. Nitrate in groundwaters of intensive agricultural areaa in coastal Northeastern Australia. Agric. Ecosysst. Environ. Vol. 94, pp. 49-58. 90.Wakida, F. T and D. N. Lerner., 2005. Non-agricultural sources of groundwater nitrate: a review and case study. Water. Res. Vol. 39, pp. 3-16. 91.Wassenaar, L. I., 1995. Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3-. Appl. Geochem. Vol. 10, pp. 391-405. 92.Widory, D., W. Kloppmann., L.Chery., J. Bonnin., H. Rochdi., and J-L. Guinamant., 2004. Nitrate in groundwater: an isotopic multi-tracer approach. J. Contam. Hydrol. Vol. 72, pp. 165-188. 93.Yanagita, T., 1990. National microbial communities. Ecological and physiological feature. Japan Scientific Societies Press/Springer, Tokyo. 94.Yoneyama, T., 1996. Characterization of natural 15N abundance of soils. In: Boutton, T. W. and S. I. Yamasaki(eds), pp.205-223. Mass Spectrometry of Soils. Marcel Dekker Inc., New York. 95.Yoshida, N., 1988. 15N-depleted N2O as a product of nitrification. Nature. Vol. 335, pp. 528-529.
摘要: 
南投名間鄉為本省重要的茶葉及農作區,過量施肥可能造成地下水污染,特別是NO3-污染。本研究採集分析名間鄉農作區與人口密集區相關地下水體之NO3-濃度,以了解該區受NO3-污染情形;同時分析水體中NO3-之氮、氧同位素組成,以辨別水體中NO3-可能之來源與轉化作用。
由地下水之NO3-濃度與氮、氧同位素組成特徵結果顯示:本研究區約有54%地下水之NO3-濃度高於世界衛生組織訂定之飲用水水質標準(45 mg NO3 L-1),主要是發生在農作區地下水,而這些受污染地下水NO3-之來源主要與土壤氮源、化學肥料有關,少部分受到動物性堆肥的影響;人口密集區之地下水NO3-濃度雖多未超過標準,但在ㄧ年的監測期間有逐漸升高的現象,其NO3-之來源主要與土壤氮源及人類排泄物有關。基本上,農作區地下水NO3-之濃度及氮、氧同位素組成特徵是受到土壤有機氮、化學肥料及動物性堆肥等不同氮源經硝化作用及混合作用所影響;人口密集區地下水NO3-之濃度及氮、氧同位素組成特徵則是受到土壤有機氮及人類排泄物等氮源經硝化作用及受到農作區含化學肥料地下水混合作用所影響,而輕微脫氮作用與植物或藻類吸收NO3-的同化作用則是改變地下水NO3-濃度的轉化作用。
URI: http://hdl.handle.net/11455/28059
其他識別: U0005-0305200715255900
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.