Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28076
標題: 強酸性土壤石灰需要量空間分佈之推估與應用
The estimation and application of the spatial distribution of lime requirement for strongly acidic soils
作者: 吳振記
Wu, Chen-Chih
關鍵字: Lime requirement;石灰需要量;Al saturation;Spatial distribution;Lime requirement regression model;Ordinary kriging;鋁飽和度;地理分佈;石灰需要量迴歸模式;一般克利金
出版社: 土壤環境科學系所
引用: 王怡雯。1998。石灰的施用對強酸性土壤鉀固定及鉀有效性的影響。國立中興大學碩士論文。 王禎祺。1999。台灣酸性土壤石灰需要量之評估。國立台灣大學碩士論文。 林紫慧、洪崑煌。1992。土壤酸性的認識。酸性土壤之特性及其改良研討會論文集。中國土壤肥料學會。p.1-49。 連深。1991。酸性土壤之利用與改良。土壤管理手冊。中興大學土壤調查試驗中心出版。p.263-276。 陳仁炫。1995。不同石灰需要量決定之石灰用量對作物生育和養分吸收的影響評估。中華農學會報,新169:90-106。 陳仁炫、丁美幸。1993。土壤pH及磷肥施用對酸性和石灰性土壤磷生物有效性的影響。中國農業化學會誌。31:653-666。 陳仁炫、徐仕林。1994。強酸性土壤石灰需要量七種測定方法的評估。中國農業化學會誌。32:61-74。 陳尊賢。1992。台灣農地酸性土壤之特性及其分類。酸性土壤之特性及其改良研討會論文集。中國土壤肥料學會。p2-1至p2-9。 莊愷瑋、李達源、陳尊賢。1996a。地理統計預測污染土壤中重金屬的空間分佈:I.極端值與半變異圖模式的影響。中國農業化學會誌。34(5):560-574。 莊愷瑋、李達源、陳尊賢。1996b。地理統計預測污染土壤中重金屬的空間分佈:II.採樣方式之探討。中國農業化學會誌。34(6):683-694。 鄭森源、萬鑫森。1994。地理統計在土壤污染方面之應用。中國農業化學會誌。32(4):406-429。 蔡宜峰、翁淑珍、黃山內。1988。滴定速測法在中部地區紅壤石灰需要量測定應用之研究。台灣農業雙月刊。24(1):52-56。 Adams, F., and C. E. Evans. 1962. A rapid method for measuring the lime requirment of Red-Yellow Podzolic soils. Soil Sci. Soc. Am. Proc. 26:355-357. Adams, F., and R. W. Pearson. 1967. Crop response to lime in the southern United States and Puerto Rico. p.161-206. In R. W. Pearson and F. Adams. (ed.) Soil acidity and liming. Am. Soc. of Agrom. Madison, WI. Atiken, R. L., P. W. Moody, and P. G. Mckinley. 1990. Lime requirement of acidic Queensland soils. II. Comparison of laboratory methods for predicting lime requirement. Aust. J. Soil Res. 28: 703-715. Bses, C. F., and Mesmer, R. E. 1976. The hydrolysis of cations. Wiley, New York. Barnhisel, R., and B.M. Bertsch. 1982. Aluminum. p.275-300. In A.L. Page et al. (ed.) Methods of soil analysis. Part II. 2nd ed. Agron. Monogr. ASA and SSSA, Madison, WI. Bekele, A., R. G. Downers, M. C. Wolcott, W. H. Hudnall, and S. H. Moore. 2003. Comparative evaluation of spatial prediction methods in a field experiment for mapping soil potassium. Soil Sci. 168(1):15-28. Borggaard, O. K. 1981. Selection extraction of amorphous iron oxides by EDTA from soil from Denmark and Tanzania. Soil Sci. 32:427-432. Bourennane, H., D. King, and A. Couturier. 2000. Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample deasities. Geoderma. 97:255-271. Brouder, S. M., B. S. Hofmann, and D. K. Morris. 2005. Mapping soil pH: Accuracy of common soil sampling strategies and estimation techniques. Soil Sci. Soc. Am. J. 69:427-442. Brown J. R. and J. R. Cisco. 1984. An improved Woodruff buffer for estimation of lime requirements. Soil Sci. Soc. Am. J. 48:587-592. Burgess, T. M., and R. Webster. 1980. Optimal interpolation and isarithmic mapping of soil properties. I. The semi-variogram and punctual kriging. J. Soil Sci. 31:315-331. Burgess, T. M., and R. Webster. 1980. Optimal interpolation and isarithmic mapping of soil properties. II. Blocking punctual kriging. J. Soil Sci. 31:333-341. Burgess, T. M., R. Webster, and A. B. McBratney. 1981. Optimal interpolation and isarithmic mapping of soil properties. IV. Sampling strategy. J. Soil Sci. 32:643-659. Cambardella, C. A., T. B. Moorman, J. M. Novak, T. B. Parkin, K. L. Karlen, R. F. Tueco, and A. E. Konopka. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58:1501-1511. Clark, J. S. 1965. The extraction of exchangeable cations from soils. Can. J. Soil Sci. 45:311-322. Coleman, N. T., and G. W. Thomas. 1964. Buffer curves of acid clay as affected by the present of ferric iron and aluminum. Soil Sci. Soc. Am. Proc. 28: 187-190. Conyers, M. K., K. R. Helyar, and G. J. Poile. 2000. pH buffering: The chemical response of acidic soils to added alkali. Soil Sci. 165:560-566. Curtin, D., H. P. W. Rostad, and P. M. Huang. 1984. Soil acidity in relation to soil properties and lime requirement. Can. J. Soil Sci. 64:545-554. Evans, C. E., and E. J. Kamprath. 1970. Lime response as related to percent Al saturation, solution Al, and organic matter content. Soil Sci. Soc. Am. Proc. 34:983-986. Farina, M. P. W., M. E. Sumner, C. O. Plank, and W. S. Letzsch. 1980. Exchangeable aluminum and pH as indicators of lime requirement of corn. Soil Sci. Soc. Am. J. 44:1036-1040. Foth H. D. and B. G. Ellis. 1988. Soil Fertility. John Wiley & Sons. New York. Fox, R. H. 1980. Comparison of several lime requirement methods for agriculture soils in Pennsylvania. Commun. Soil Sci. Plant Anal. 11:57-69. Foy, C. D. 1984. Physiological effects of hydrogen, aluminum and manganese toxicities in acid soil. In F. Adams(ed.) Soil acidity and liming. 2nd ed. Agronomy 12:57-98. Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. p.404-408. In A. Klute et al. (ed.) Methods of Soil Analysis. Part I. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Haynes, R. J. 1982. Effects of liming on phosphate availability in acid soils. A critical review. Plant Soil. 68: 289 – 308. Hunter, D. J., L. G. G. Yapa, and N. V. Hue. 1997. Effects of green manure and coral lime on corn growth and chemical properties of acid oxisol in western Samoa. Biol. Ferti. Soil. 24:266-273. Jackson, M. L. 1963. Aluminum bonding in soils. A unifying in soil science. Soil Sci. Soc. Am. Proc. 27: 1-10. Journel, A. G., and C. J. Huijbregts. 1978. Mining geoststistics. Academic Press. New York. Juang, K. W., D. C. Liou, and D. Y. Lee. 2002. Site-specific phosphorus application based on the kriging fertilizer-phosphorus availability index of soils. J. Environ. Qual. 31:1248-1255. Keeney, D. R., and R. B. Corey. 1963. Factors affecting the lime requirements of Wisconsin soils. Soil Sci. Soc. Am. Proc. 27:277-280. Kundsen, D., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. p.225-246. In A. L. Page et al. (ed.) Methods of Soil Analysis. Part II. 2nd ed. ASA and SSSA, Madison, WI. Liu, M., D. E. Kissel, M. L. Cabreara, and P. F. Vendrell. 2005. Soil lime requirement by direct titration with a single addition of calcium hydroxide. Soil Sci. Soc. of Am. J. 69:522-530. Materechera, S. A., and T. S. Mkhabela. 2002. The effectiveness of lime, chicken manure and leaf litter ash in ameliorating acidity in a soil previously under black wattle plantation. Bio. Tech. 85:9-16. McLean, E. O., S. W. Dumford, and F. Coronel. 1966. A comparison of several methods of determining lime requirements of soils. Soil Sci. Soc. Am. Proc. 30:26-30. McLean, E. O. 1982. Soil pH and lime requirement. p.199-224. In A. L. Page et al. (ed.) Methods of soil analysis. Part II. 2nd ed. Agron. Monog. 5. ASA and SSSA, Madison, WI. McLean E. O., D. J. Eckert, G. Y. Reddy, and J. F. Trierweiler. 1978. An improver SMP soil lime requirement method incorporation double-buffer and quick-test features. Soil Sci. Soc. Am. J. 42:311-316. Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. p.539-579. In A. L. Page et al. (ed.) Methods of Soil Analysis. Part II. 2nd ed. ASA and SSSA, Madison, WI. Owusu-Bennoah, E., D. K. Acquaye, and T. Mahamah. 1995. Comparative study of selected lime requirement methods for some acidic Ghanaian soils. Soil Sci. Plant Anal. 26:937-950. Reitemeier, R. F. 1951. Soil potassium. Adv. Agron. 3:113-159. Shoemaker, H. E., E. O. McLean, and P .E. Pratt. 1961. Buffer methods for determining the lime requirement of soils with appreciable amounts of extractable aluminum. Soil Sci. Soc. Am. Proc. 25:274-277. Sims, J. T., and L. Dennis. 1989. Evaluation of lime requirement methods for Delawer soils. Commum. Soil Sci. plant Anal. 20: 1279-1289. Thomas, G. W., and N. T. Coleman. 1959. A chromatographic approach to the leaching of fertilizer salts in soils. Soil Sci. Soc. Am. Proc. 23:113-116. Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Soil Fertility and fertilizer. 4th ed. p.249-291. Macmillan publishing company, NY. Triantafilis, J., A. I. Huckel, and I. O. A. Odeh. 2001. Comparison of statistical prediction methods for estimating field-scale clay content using different combinations of ancillary variables. Soil Sci. 166:415-427. Tran, T. R., and W. Van Lierop. 1982. Lime requirement determination for attaining pH 5.5 and 6.0 of coarse-textured soils using buffer-pH method. Soil Sci. Soc. Am. J. 46:1008-1014. Volk, V. V., and M. L. Jackson. 1964. Inorganic pH dependent cation exchange charge of soils. Clays and clay mineral. 12: 281-285. Voltz, M., and R. Webster. 1990. A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. J. Soil Sci. 41:473-490. von Willert, F. J., and R. C. Stehouwer. 2003. Compost, limestone, and gypsum effect on calcium transport in acidic minespoil. Soil Sci. Soc. Am. J. 67: 778-786. Voundi Nkana, J. C., F. M. G. Tack, and M. G. Verloo. 2001. Availability and plant uptake of nutrients following the application of paper pulp and lime to tropical acid soils. J. Plant Nutr. Soil Sci. 164:329-334. Webber, M. D., P. B. Hoyt, M. Nyborg, and Diane Corneau. 1977. A comparison of lime requirement methods for acid Canadian soils. Soil Sci. Plant Anal. 27:1427-1436. Webber, M. D., P. B. Hoyt, and D. Corneau. 1982. Soluble Al, base saturation and pH in relation to barley yield on Canadian acid soils. Can. J. Soil Sci. 62:397-409. Woodruff, C. M. 1947. Determination of exchangeable hydrogen and lime requirement of the soil by means of the glass electrode and a buffered solution. Soil Sci. Soc. Am. Proc. 12:141-142. Yost, R. S., G. Uehara, and R. L. Fox. 1982. Geostatistical analysis of soil chemical properties of large land area. II. Kriging. Soil Sci. Soc. Am. J. 46:1033-1037. Zhang, R., D. E. Myers, and A. W. Warrick. 1992. Estimation of spatial distribution of soil chemicals using pseudo-cross -variograms. Soil Sci. Soc. Am. J. 56:1444-1452.
摘要: 
Strongly acidic soil is the main problem soil in Taiwan, liming has been suggested to be the most economical and useful practice to reclaim strongly acidic soils. However, the effect is determined by the kinds and the amount of lime materials used. The suitable liming practices are very important for managing strongly acidic soils. The objectives of this study were to determine the lime requirements of twenty-four strongly acid soils of Taiwan using the methods of incubation, reducing Al saturation to 10%, and three buffer methods (SMP-single, Woodruff-original and Woodruff-improved method, respectively). In addition, aregression analysis was also assessed to compare the effects among four different lime materials (agricultural lime, dolomite, oyster-shell powder, and silicate slag). Result showed that the suggested lime requirement of the strongly acidic soils can be calculated by using regression models developed by correlation between lime requirement(y) determined by reducing Al saturation to 10% and lime requirement determined by buffer method(x), such as y = 0.42 x1 -2.16 (R2 = 0.87, p<0.001); y = 1.05 x2 -2.33 (R2 = 0.84, p<0.001) and y = 0.73 x3 - 1.63 (R2 = 0.88, p<0.001), x1, x2, and x3 are the lime requirement determined by SMP-single method, Woodruff-original method and Woodruff-improved method, respectively. The capacity of rising soil pH is generally agricultural lime>dolomite>oyster-shell powder>silicate slag. In the other study in Ho-li, soil samples that took by grid sampling were used to study for lime requirement spatial distribution. The results showed that the least sampling size of this study area was 0.5-ha griding sampling. Furthermore, the spatial distribution of LR could be predicted by using ordinary kriging that the data of LR get from regression models. The application of this regression models was sampled from Da-du-shan soil with 0.5-ha griding sampling. The spatial distribution of LR in Da-du-shan soil was measured by regression models and predicted by using ordinary kriging. Afterward, the LR spatial distribution map was combined with the electronic map by geographic information system. According to the map, we can get the liming of the actual position which wanted to ameirolate and achieve the purpose of improvement quickly.

強酸性土壤為台灣主要的問題土壤,石灰施用已知為最經濟有效的方法,其質材之選用及用量之適當與否,將影響其改良效果。適當的石灰施用為管理強酸性土壤的重要課題。本試驗的目的在於,以直接培育法、降低鋁飽和度至10%法和三種不同緩衝溶液法(SMP-single、Woodruff-original和Woodruff-improved法),分別測定台灣地區二十四種強酸性土壤的石灰需要量。另以迴歸方程式求取四種石灰質材間(農用石灰、白雲石粉、蚵殼粉和矽酸爐渣)的改良效果。另以迴歸方式求得降低鋁飽和度至10%法與不同緩衝溶液法間之石灰需要量關係式,以建立強酸性土壤之石灰需要量模式。結果顯示,推薦之強酸性土壤石灰需要量,可由緩衝溶液法的測值(x),與降低鋁飽和度至10%所需的石灰量(y)間所建立的相關式來求得,如y = 0.42 x1 - 2.16 (R2 = 0.87, p<0.001);y = 1.05 x2 - 2.33 (R2 = 0.84, p<0.001)及y = 0.73 x3 - 1.63 (R2 = 0.88, p<0.001),其中x1、x2和x3為分別以SMP-single法、Woodruff-original法及Woodruff-improved法所測得之石灰量。石灰質材提昇土壤pH之能力一般為:農用石灰>白雲石粉>蚵殼粉>矽酸爐渣。另在后里地區的研究,乃以網格方式採土並探討石灰需要量的理分佈。結果顯示,以0.5公頃網格可得最少數的採樣點,另配合石灰需要量迴歸模式所求得之石灰需要量,再利用一般克利金法,可預測強酸性土壤之石灰需要量空間分佈,以作為全面改良強酸性土壤之依據。模式之應用係以0.5公頃網格採樣方式,採集大肚山區強酸性土壤,以SMP-single迴歸模式估測石灰需要量,利用克利金法推估石灰需要量分佈圖,並藉由地理資訊系統與電子地圖相結合,即可得到石灰需要量之空間分佈圖,藉由此圖,可以直接得知欲改良實際位置之強酸性土壤石灰用量,達成快速改良之目的。
URI: http://hdl.handle.net/11455/28076
其他識別: U0005-1708200710272100
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.