Please use this identifier to cite or link to this item:
標題: 分支切割技術應用於結構光與數位光彈相位展開之研究
Branch cutting technique studies on structured light and digital photoelasticity applications
作者: 張曜庭
Zhang, Yao-ting
關鍵字: 結構光;structured light;數位光彈;分支切割技術;形貌不連續;digital photoelasticity;branch cutting technique;physical discontinuities
出版社: 機械工程學系所
引用: [1] D. C. Ghiglia, G. A. Mastin, L. A. Romero, “Cellular-automata method for phase unwrapping,” Journal of the Optical Society of America A, Vol.4, pp267-280(1987). [2] A. Spik, D. W. Robinson, “Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor,” Optics and Lasers in Engineering, 14, pp25-37(1991). [3] M. A. Herraez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path”, Appl. Opt. , Vol. 41 (35) , pp7437-7444 (2002). [4] Y. T. Zhang, M. J. Huang, “Surface crack search and marking on materials with regional phase unwrapping technology”, Advanced Materials Research, vol. 291-291, pp1074-1081(2011). [5] D. Mayorga-Cruz, P. A. M''arquez-Aguilar, O. Sarmiento-Martinez, J. Uruchurtu-Chavarin, “Evaluation of corrosion in electrochemical systems using Michelson interferometry,” Optics and Lasers in Engineering, Vol. 45,pp140-144(2007). [6] C. Karaalioglu, Y. Skarlatos, “Measurement of thin film thickness by electronic speckle pattern interferometry,” Optics Communications, Vol. 234, pp269-276(2004). [7] X. G. Dai, H. Yun, Q. Pu, “Measuring thickness change of transparent plate by electronic speckle pattern interferometry and digital image correlation,” Optics Communications, Vol.283, pp3481-3486(2010). [8] I. Yamaguchi, S. Ohta, J. I. Kato, “Surface contouring by phase-shifting digital holography,” Optics and Lasers in Engineering, Vol. 36, pp417-428(2001). [9] K. C. Fan, “A non-contact automatic measurement for free-form surface profiles”, Computer Integrated Manufacturing Systems, Vol. 10, pp277-285(1997). [10] C. Yu, Q. Peng, “A correlation-based phase unwrapping method for Fourier-transform profilometry,” Optics and Lasers in Engineering, Vol. 45, pp.730-736(2007). [11] M. J. Tsai, C. C. Hung, “Development of a high-precision surface metrology system using structured light projection,” Measurement, Vol. 38, pp236–247(2005). [12] J. Xu, N. Xi, C. Zhang, J. Zhao, B. Gao, Q. Shi, “ Rapid 3D surface profile measurement of industrial parts using two-level structured light patterns,” Optics and Lasers in Engineering, Vol. 49, pp.907-914(2011). [13] P Pinit, E. Umezaki, “Digitally whole-field analysis of isoclinic parameter in photoelasticity for four-step color phase-shifting technique,” Opt Lasers Eng, 45, pp795–807(2007). [14] S. Barone, G. Burriesci, G. Pertrucci, “Computer aided photoelasticity by an optimum phase stepping method,” Exp Mech, 23, pp132–139(2002). [15] A. Baldi, F. Bertolino, F. Ginesu, “A temporal phase unwrapping algorithm for photoelastic stress analysis,” Opt Lasers Eng, 45, pp612–617(2007). [16] Z. F. Wang, E. A. Patterson, “Use of phase-stepping with demodulation and fuzzy sets for birefringence measurement,” Opt Lasers Eng , 22, pp91–104(1995). [17] P. Siegmann, D. Backman, E. A. Patterson, “A robust approach to demodulating and unwrapping phase-stepped photoelastic data,” Exp Mech, 45, pp278–289(2005). [18] M. Ramji, K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity—issues, implementation and application,” Opt Lasers Eng, 46, pp257–271(2008). [19] K. Ashokan, K. Ramesh, “An adaptive scanning scheme for effective whole field stress separation in digital photoelasticity,” Opt Lasers Technol, 41, pp25–31(2009). [20] M. J. Huang, P.C. Sung, “Regional phase unwrapping algorithm for photoelastic phase map,” Opt Exp, 18, pp1419–1429(2010). [21] R. M. Goldstein, H. A. Zebker, C. L. Werner, “Satellite radar interferometry - Two-dimensional phase unwrapping,” Radio Science, vol. 23, no.4, pp713-720(1988). [22] B. Gutmann, H. Weber, “Phase unwrapping with the branch-cut method : clustering of discontinuity source and reverse simulated annealing,” Appl. Opt., Vol.38, No.26, pp5577-5593(1999). [23] J. R. Buckland, J. M. Huntley, S. R. E. Turner, ”Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt., Vol.34, No.23, pp5100-5108(1995). [24] R. Cusack, J. M. Huntley, H. T. Goldrein, ”Improved noise-immune phase-unwrapping algorithm,” Appl .Opt., Vol.34, No.5, pp781-789(1995). [25] B. Gutmann, H. Weber, ”Phase unwrapping with the branch-cut method : role of phase-field direction,” Appl. Opt., Vol.39, No.26, pp4802-4816(2000). [26] H. A. Aebischer, S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Optics Communications, Vol. 162, Issue 4-6, pp.205-210(1999). [27] J. Salvi, J. Pagès, J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognition, Vol. 37, Issue 4, pp.827-849(2004). [28] P. S. Huang, F. Jin, F. P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique, ” Optics and Lasers in Engineering, Vol.31(5), pp371-380(1999). [29] J. Batlle, E. Mouaddib, J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recognition, Vol. 31, Issue 7, pp. 963-982(1998). [30] J. H. Bruning, D. R. Herriott, Gallagher J. E., Rosenfeld D. P., White A. D., Brangaccio D. J. , “Digital Wavefront Measure Interferometry for Testing Optical surface and Lenses,” Applied Optics, Vol. 13, Issue 11, pp2693-2703(1974). [31] , P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International desPoids et Mesures,” Metrologia 2, pp13-23(1966). [32] P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,”Applied optics, Vol. 26, Issue 13, pp2504-2506(1987). [33] M. J. Huang, C. J. Lai, “Phase unwrapping based on a parallel noise-immune algorithm,” Optics and Laser Technology, Vol. 34, pp457-464(2002). [34] J. J. Gierloff,“Phase Unwrapping by regions,”Current Developments in Optical Engineering, Vol. 818, pp2-9(1987). [35] F. S. María, D. R. Pablo, M. H. Jonathan, J. G. Martin, C. Rhodri, A. B. Daniel, “Branch cut surface placement for unwrapping of undersampled three-dimensional phase data:application to magnetic resonance imaging arterial flow mapping,” Applied Optics, Vol. 45, Issue 12, pp2711-2722 (2006) [36] J. A. Quiroga, A. Gonzalez-Cano, E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Appl. Opt. 34 (14), pp25-60(1995). [37] M. A. Herraez, D. R. Burton, M. J. Lalor, M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. , Vol. 41 (35), pp7437-7444 (2002) [38] Y. T. Zhang, M. J. Huang, T. Y. Tsai, “Searching Discontinuous and Jump Points in Physical Discontinuities with Adaptive Phase Unwrapping,” Computer-Aided Design & Applications, vol. 9, pp385-395(2012). [39] Y. T. Zhang, M. J. Huang, H. R. Liang, F. Y. Lao, “Branch cutting algorithm for unwrapping photoelastic phase map with isotropic point,” Optics and Lasers in Engineering, Vol. 50, issue 5, pp619-631(2012). [40] X. F. Yao, L. H. Jian, W. Xu, G. C. Jin, H. Y. Yeh, “Digital Shift photoelasticity with optical enlarged unwrapping technology for local stress measurement”, Optical and Laser Technology, pp.582-589(2004). [41] V. S. Prasad, K. R. Madhu, K. Ramesh, “Towards effective phase unwrapoing in digital photoelasticity”, Optical and Laser in Engineering, pp421-436(2004). [42] R. Jain, R. Kasturi, B. G. Schunck, “Machine vision,” McGraw- Hill, Inc., ISBN 0-07-032018-7, (1995). [43] J. W. Dally, W. F. Riley,” Experimental stress analysis,” New York, McGraw-Hill, Inc., 1991 [44] C. K. Hong, H. S. Ryu, H. C. Lim, “Least-square fitting of the phase map obtained in phase-shifting electronic speckle pattern interferometry,” Opt Lett, Vol.20,pp931-934(1995). [45] 張曜庭,“自動化影像處理之穿透式光彈儀”,中華民國新型專利,證書號數M394457,中華民國九十九年十二月。


A method of adjustment threshold of the jump points search is proposed in this paper. The jump points guide the same polarity discontinuity points in the branch cut. It can solve physical discontinuities in the surface profile measurement of the structured light. The reference points of the branch cut is expanded several times. Let the same polarity discontinuity points find the correct branch cutting path, and pointed out the physical discontinuities contours. Experimental results show that even a physical discontinuities is very complex, the branch cutting can also be clearly and correctly calibrated. It repairs the regional boundary fracture caused by physical discontinuities, and finally completes the regional phase unwrapped.

A branch cutting algorithm is proposed to solve the wrapped isoclinic causing isochromatic discontinuity and thus to decouple the isoclinic-isochromatic interaction of photoelastic phase maps. Rather than pixel by pixel, the branch-cutting isoclinic wrapped map is then restored by a modified regional approach and is proved to be more time-effective and less effort needed than the earlier algorithm. The decoupled isochromatic data can be handled easily afterward. Two type of simulated samples (i.e., specimens with and without isotropic points) are used to detail why and how isoclinic and isochromatic are interactive with each other and the decoupling method of the present study. Experimental works prove the effectiveness, robustness and simplicity of the newly developed algorithm.
其他識別: U0005-0508201214511900
Appears in Collections:機械工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-8091061102-1.pdf6.04 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.