Please use this identifier to cite or link to this item:
標題: 黏土礦物層面電荷特性之電化學分析
Electroanalysis of Layer Charge Character on Clay Minerals
作者: 鄭世堃
Cheng, Shih-Kun
關鍵字: clay modified electrode;黏粒修飾電極;clay minerals;黏土礦物
出版社: 土壤環境科學系所
引用: 參考文獻 陳鴻基、李國欽、莊作權。1995。利用粘粒修飾電極探討巴拉刈在粘土礦物膜層中的移動性。中華民國雜草學會會刊16: 1-13。 陳鴻基、曾志明。2003a。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動性的影響。興大農林學報52: 1-19。 陳鴻基、曾志明。2003b。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活性的影響。中華農學會報4: 429-446。 楊庭豪、陳鴻基、曾志明。2003。利用網版印刷碳電極探討巴拉刈在黏土礦物表面上的鍵結。土壤與環境6: 193-206。 楊庭豪。2004。利用化學修飾電極法探討不同離子及堆肥對巴拉刈在土壤中移動性的影響。國立中興大學土壤環境科學系碩士論文。 鍾協訓、曾志明。2000。網版印刷電極在在分析化學上的製作與應用。科儀新知22(3): 72-82。 鍾協訓。2002。網版印刷電極在分析化學上的應用與發展。國立中興大學化學研究所博士論文。 Ahmet, R., and G. Lagaly. 2001. Baseline studies of the clay minerals society source clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Miner. 49: 393-397. Baldassari, S., S. Komarneni, E. Mariani, and C. Villa. 2006. Microwave versus conventional preparation of organoclays from natural and synthetic clays. Appl. Clay Sci. 31: 134-141. Bard, A. J., and L. R. Faulkner. 1980. Electrochemical methods. Wiley and Sons, New York. Borchardt, G. A. 1977. Montmorillite and other smectite minerals. In “Minerals in Soil Environments”, ed. J. B. Dixon and S. B. Weed, pp. 293-330. Wisconsin: Soil Sci. Soc. Am. Boyd, S. A., M. M. Mortland, and C. T. Chiou. 1988. Sorption characteristics of organic compounds on hexadecyltrimethylammonium- smectite. Soil Sci. Soc. Am. J. 52: 652-657. Brahim, B., P. Labbe, and G. Reverdy. 1992. Study of the adsorption of cationic surfactants on aqueous laponite clay suspensions and laponite clay modified electrodes. Langmuir. 8: 1908-1918. Bremner, J. M. 1967 Nitrogen compounds. In “Soil Chemistry”, ed. A. D. McLaren and G. H. Peterson, pp. 19-66. New York: Marcel Dekker. Carrizosa, M. J., P. J. Rice, W. C. Koskinen, I. Carrizosa, and M. Hermosin. 2004. Sorption of isoxaflutole and DKN on organoclays. Clays Clay Miner. 52: 341-349. Dixon, J. B., and D. G. Schulze. 2002. Soil mineralogy with environmental applications. Madison, WI, USA: Soil Science Society of America, Inc. Favre, H., and G. Lagaly. 1991. Organo-bentonites with quaternary alkylammonium ions. Clay Miner. 26: 19-32. Fitch, A., J. Du, H. Gan, and J. W. Stucki. 1995. Effect of clay charge on swelling: A clay-modified electrode study. Clays and Clay Miner. 43: 607-614. Fitch, A., J. Song, and J. Stein. 1996. Molecular structure effects on diffusion of cations in clays. Clays and Clay Miner. 44: 370-380. Fitch, A. 1990. Clay modified electrodes : a review. Clay and Clay Miner. 38: 391-400. Flaig, W., H. Beutdspacher, and E. Rietz.1975. Chemical composition and physical properties of humic substance. In “Soil Components”, ed. J. E. Gieseking, pp. 1-211. New York: Springer-Verlag. Ghosh, P. K., and A. J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105: 5691-5693. Haider, K., L. R. Frederick, and W. Flaig. 1965. Reactions between amino acid compounds and phenols during oxidation. Palnt Soil 22: 49-64. Haque, R., S. Lilley, and W. R. Coshow. 1970. Mechanism of adsorption of diquat and paraquat on montmorillonite surface. J. Colloid Interface Sci. 33: 185-188. Häusler, W., and H. Stanjek. 1988. A refined procedure for the determination of the layer charge with alkylammonium ions. Clay Miner. 23: 233-337. He, H. P., L. R. Frost, and J. X. Zhu. 2004. Infrared study of HDTMA+ intercalated montmorillonite. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 60: 2853-2859. Hernández, P., E. Alda, and L. Hernández. 1987. Determination of mercury(II) using a modified electrode with zeolite. J. Anal. Chem. 327: 676-678. Hernández, L., P. Hernández, and Z. Sosa. 1988. Determination of phenol by differential-pulse voltammetry with a sepiolite-modified carbon paste electrodes. J. Anal. Chem. 331: 525-527. Ijdo, W. L., and T. J. Pinnavaia. 1998. Staging of organic and inorganic gallery cations in layered silicate heterostructures. J. Solid State Chem. 139: 281-289. Jaynes, W. F., and S. A. Boyd. 1991. Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Sci. Soc. Am. J. 55: 43-48. Jaynes, W. F., and C. E. Vance. 1999. Sorption of benzene, toluene, ethylbenzene and xilene (BTEX) compounds by hectorite clays exchanged with aromatic organic cation. Clays Clay Miner. 47: 358-365. Jiang, J. Q., C. Cooper, and S. Quki. 2002. Comparison of modified montmorillonite adsorbents. Part I: preparation, characterization and phenol adsorption. Chemosphere 47: 711-716. Joo, P. 1990. Electrochemistry of dye- and surfactant-incorporated montmorillonite-modified electrodes. Colloids and Surfaces. 49: 29-39. Joo, P., and A. Fitch. 1996. Ionic and molecular transport in hydrophobized montmorillonite films: An electrochemical survey. Environ. Sci. Technol. 30: 2681-2686. Joo, P., A. Fitch, and S. H. Park. 1997. Transport in hydrophobized montmorillonite thin films. Environ. Sci. Technol. 31: 2186-2192. Klapyta, Z., T. Fujita, and N. Iyi. 2001. Adsorption of dodecyl- and octadecyl- trimethylammonium ions on a smectite and synthetic micas. Appl. Clay Sci. 19: 5-10. Klapyta, Z., A. Gawel, T. Fujita, and N. Iyi. 2003. Structural heterogeneity of alkylammonium-exchanged, synthetic fluorotetrasilicic mica. Clay Miner. 38: 151-160. Krishna, B. S., D. S. R. Murty, and B. S. Jai Prakash. 2001. Surfactant-modified clay as adsorbent for chromate. Appl. Clay Sci. 20: 65-71. Kumada, K., and H. Kato. 1970. Browning of pyrogallol as affect by clay minerals. Soil Sci. Plant Nutr. 13: 151-158. Lagaly, G., M. Fernandez Gonzalez, and A. Weiss. 1976. Problems in layer charge determination of montmorillonite. Clay Miner. 11: 173-187. Lagaly, G. 1979. The “layer charge” of regular interstratified 2:1 clay minerals. Clays Clay Miner. 27: 1-10. Lagaly, G. 1981. Characterization of clays by organic compounds. Clay Miner. 16: 1-21. Lagaly, G. 1982. Layer charge heterogeneity in vermiculites. Clays Clay Miner. 30: 215-222. Lagaly, G. 1986. Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22: 43-51. Laird, D. A., A. D. Scott, and T. E. Fenton. 1989. Evaluation of the alkylammonium method of determining layer charge. Clays Clay Miner. 37: 41-46. Lee, J. H., and D. R. Peacor. 1986. Expansion of smectite by laurylamine hydrochloride: Ambiguities in transmission electron microscope observations. Clays Clay Miner. 34: 69-73. Letaïef, S., P. Aranda, and E. Ruiz-Hitzky. 2005. Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl. Clay Sci. 28: 183-198. Macha, S. M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta. 128: 1-18. Madejová, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy 31: 1-10. Manceau, A., B. Lanson, V. A. Drits, D. Chateigner, W. P. Gates, J. Wu, D. Huo, and J. W. Stucki. 2000. Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist 85: 133-152. Martin, J. P., and K. Haider. 1980. Microbial degradation and stabilization of 14C-labeled lignins, phenols and phenolic polymers in relation to soil humus formation. In “Lignin Biochemistry: Microbiology, Chemistry and Potential Applications”, ed. T. K. Kirk, T. Higuchi and H. Chang, pp. 77-100. Boca Ration, Florida: CRC Press, Inc. McKeague, J. A., M. V. Cheshire, F. Andreux, and J. Berthelin. 1986. Organo-mineral complexes in relation to pedogenesis. In “Interaction of Soil Minerals with Natural Organics and Microbes”, ed. P. M. Huang and M. Schnitzer, pp. 549-592. Wisconsin: Soil Science Society of America. Meier , L. P., R. Nueesch, and F. T. Madsen. 2001. Organic pillared clays. J. Colloid Interface Sci. 238: 24-32. Mermut, A. R., and G. Lagaly. 2001. Baseline studies of the clay minerals society source clays: Layer charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Miner. 49: 393-397. Modejová, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy 31: 1-10. Mortland, M. M. 1970. Clay-organic complexes and interactions. Adv. Agron. 22: 75-117. Mortland, M. M., and L. J. Halloran. 1976. Polymerization of aromatic molecules on smectite. Soil Sci. Soc. Am. J. 40: 367-370. Mott, H. V., and W. J. Weber, Jr. 1991. Factors influencing organic contaminant diffusivities in soil-bentonite cut off barriers. Environ. Sci. Technol. 25: 1708-1715. Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27: 159-177. Naidja, A., P. M. Huang, and J. M. Bollag. 1998. Comparison of reaction products from the transformation of catechol catalyzed by birnessite or tyrosinase. Soil Sci. Soc. Am. J. 62: 188-195. Navrátilová, Z., and P. Kula. 2003. Clay modified electrodes: present application and prospects. Electroanalysis. 15: 837-846. Nematollahi, D., M. Alimoradi, and S. W. Husain. 2004. Cyclic voltammetric study of the oxidation of catechols in the presence of cyanide ion. Electroanalysis 16: 1359-1365. Nematollahi, D., A. Ariapad, and M. Rafiee. 2007. Electrochemical nitration of catechols: Kinetic study by digital simulation of cyclic voltammograms. J. Electroana. Chem. 602: 37-42. Newman, A. C. D., and G. Brown. 1987. The chemical constitution of clays. In “Chemistry of Clays and Clay Minerals”, ed. A. C. D. Newman, pp. 1-128. New York: John Wiley & Sons, Inc. Ogawa, M., T. Aono, K. Kuroda, and C. Kato. 1993. Photophysical probe study of alkylammonium-montmorillonite. Langmuir 9: 1529-1533. Ogawa, M., T. Wada, and K. Kuroda. 1995. Intercalation of pyrene into alkylammonium- exchanged swelling layered silicates: The effects of the arrangements of the interlayer alkylammonium ions on the states of adsorbates. Langmuir 11: 4598-4600. Osman, M. A., M. Ploetze, and P. Skrabal. 2004. Structure and properties of alkylammonium monolayers self-assembled on montmorillonite platelets. J. Phys. Chem. 108: 2580-2588. Peng, J., and Z. N. Gao. 2006. Influence of micelles on the electrochemical behaviors of catechol and hydroquinone and their simultaneous determination. Anal. Bioanal. Chem. 384: 1525-1532. Pecorari, M., and P. Bianco. 1998. Ion-exchange voltammetry of cationic species at membrane clay-modified electrodes. Electroanalysis 10: 181-186. Pinnavaia, T. J., P. L. Hall, S. S. Cady, and M. M. Mortland. 1974. Aromatic radical cation formation on the intracrystal surface of transition metal layer lattice silicates. J. Phys. Chem. 78: 994-999. Qi, H. and C. Zhang. 2005. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17: 832-838. Senkayi, A. L., J. B. Dixon, L. R. Hossner, and L. A. Kippenberger. 1985. Layer charge evaluation of expandable soil clays by an alkylammonium method. Soil Sci. Soc. Amer. J. 49: 1054-1060. Shahrokhian, S., and A. Hamzehloei. 2003. Electrochemical oxidation of catechol in the presence of 2-thiouracil: application to electro-organic synthesis. Electrochem. Communi. 5: 706-710. Shahrokhian, S., and M. Amiri. 2005. Mercaptotriazole as a nucleophile in addition to o-quinone electrochemically derived from catechol: application to electrosynthesis of a new group of triazole compounds. Electrochem. Communi. 7: 68-73. Shindo, H., and P. M. Huang. 1982. Role of Mn(IV) oxide in abiotic formation of humic substances in the environment. Nature 298: 86-93. Shindo, H., and P. M. Huang. 1984a. Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural environments. Nature 308: 57-58. Shindo, H., and P. M. Huang. 1984b. Catalytic effects of manganese(IV), iron(III), aluminum and silicon oxides on the formation of phenolic polymers. Soil Sci. Soc. Am. J. 48: 927-934. Shindo, H., and P. M. Huang. 1985. The catalytic power of inorganic components in the abiotic synthesis of hydroquinone-derived humic polymers. Appl. Clay Sci. 1: 71-81. Solomon, D. H. 1968. Clay minerals as electron acceptors and/or electron donors in organic reactions. Clays Clay Miner. 16: 31-39. Solomon, D. H., B. C. Loft, and J. D. Swift. 1968. Reactions catalyzed by minerals. IV. The mechanism of the benzidine blue reaction on silicate minerals. Clay Miner. 7: 389-397. Sposito, G. 1989. The chemistry of soils. Oxford, New York. Stein, J. A., and A. Fitch. 1995. Computerized system for dual-electrode multisweep cyclic voltammetry for use in clay-modified electrode studies. Anal. Chem. 67: 1322-1325. Stein, J. A., and A. Fitch. 1996. Effect of clay type on the diffusional properties of a clay-modified electrode. Clays and Clay Miner. 44: 381-392. Stevenson, F. J. 1994. Humus chemistry. Chemistry, genesis, composition, reaction. New York: John Wiley & Sons. Subramanian, P., and A. Fitch. 1992. Diffusional transport of solutes through clay: Use of clay-modified electrodes. Environ. Sci. Technol. 26: 1775-1779. Swaby, R. J., and J. N. Ladd. 1962. Chemical nature, microbial resistance, and origin of soil humus. pp. 197-202. New Zealand: Int. Soc. Soil Sci. Trans. Comm. IV. Theng, B. K. G. 1971. Mechanisms of formation of colored clay-organic complexes. A review. Clays Clay Miner. 19: 383-390. Vali, H., and H. M. Köster. 1986. Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy. Clay Miner. 21: 827-859. Vali, H., R. Hesse, and H. Kodama. 1992. Arrangement of n-alkylammonium ions in phlogopite and vermiculite: An XRD and TEM study. Clays Clay miner. 40: 240-245. Vali, H., and R. Hesse. 1990. Alkylammonium ion treatment of clay minerals in ultrathin section: A new method for HRTEM examination of expandable layers. American Mineralogist 75: 1443-1446. Van Olphen, H., and J. J. Fripiat. 1979. Data handbook for clay minerals and other non-metallic minerals. Oxford, England: Pergamon Press. Wang, T. S. C., and S. W. Li. 1977. Clay minerals as heterogenous catalysts in preparation of model humic substances. Z. Pflanzenernaehr. Bodenkd. 140: 669-676. Wang, T. S. C., M. M. Kao, and S. W. Li. 1978a. A new proposed mechanism of formation of soil humic substance. In “Studies and Essays in Commemoration of Golden Jubilee of Academia Sinica”, pp. 357-372. Taipei: Academia Simica. Wang, T. S. C., S. W. Li, and Y. L. Ferng.. 1978b. Catalytic polymerization of phenolic compounds by clay minerals. Soil Sci. 126: 15-21. Wang, T. S. C., S. W. Li, and P. M. Huang 1978c. Catalytic polymerization of phenolic compounds by a latosol. Soil Sci. 126: 81-86. Wang, T. S. C., M. M. Kao, and P. M. Huang. 1980. The effect of pH on the catalytic synthesis of humic substances by illite. Soil Sci. 129: 333-338. Wang, T. S. C., J. H. Chen, and W. M. Hsiang. 1985. Catalytic synthesis of humic acids containing various amino acids and dipeptides. Soil Sci. 140: 3-10. Wang, T. S. C., P. M. Huang, C. H. Chou, and J. H. Chen. 1986. The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances. In “Interactions of Soil Minerals with Natural Organics and Microbes”, ed. P. M. Huang and M. Schnitzer, pp. 251-281. Wisconsin: Soil Sci. Soc. Am. Wang, M. C., and P. M. Huang. 1987. Catalytic polymerization of hydroquinone by nontronite. Can. J. Soil Soc. 67: 867-875. Wang, M. C. 1987. Catalytic role of selected soil minerals in the abiotic formation of humic substances and the associated reaction. Ph. D. thesis. Saskatchewan: Department of Soil Science University of Saskatchewan. Wang, M. C. 1991. Catalysis of nontronite in phenols and glycine transformations. Clay. and Clay Minerals 39: 202-210. Wang, M. C., and P. M. Huang. 1991. Nontronite catalysis on polycondensation of pyrogallol and glycine and the associated reaction. Soil Sci. Soc. Am. J. 55: 1156-1161. Wang, M. C., and P. M. huang. 2003. Cleavage and polycondensation of pyrogallol and glycine catalyzed by natural soil clays. Geoderma 112: 31-50. White, J. L. 1971. Interpretation of infrared spectra of soil minerals. Soil Sci. 112: 22-31. White, J. L., and C. B. Roth. 1986. Infrared spectromotry. In “Methods of Soil Analysis. PartⅠ. Physical and mineralogical methods(2nd ed.)”, ed. A. Klute, pp. 291-330. Madison, WI: Amer. Soc. Agron. Xiang, Y., and G. Villemure. 1995. Electrodes modified with synthetic clay minerals: evidence of direct electron transfer from structural iron sites in the clay lattice. J. Electroanal. Chem. 381: 21-27. Xiang, Y., and G. Villemure. 1996a. Electrode modified with synthetic clay mineral: electrochemistry of cobalt smectites. Clays and Clay Minerals 44: 515-521. Xiang, Y., and G. Villemure. 1996b. Electrodes modified with synthetic clay minerals: electron transfer between adsorbed tris(2,2’-bipyridyl) metal cations and electroactive cobalt centers in synthetic smectites. J. Phys. Chem. 100: 7143-7147. Zen, J. M., P. Y. Chen, and A. S. Kumar. 2003a. Flow injection analysis of an ultratrace amount of arsenite using a Prussian Blue-modified screen-printed electrode. Anal. Chem. 75: 6017-6022. Zen, J. M., A. Senthil Kumar, and D. M. Tsai. 2003b. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15: 1073-1087. Zen, J. M., H. H. Chung, and A. S. Kumar. 2002. Selective detection of ο-diphenols on copper-plated screen-printed electrodes. Anal. Chem. 74: 1202-1206. Zen, J. M., and A. S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76: 205A-211A. Zhang, W., J. Zeng, L. Liu, and Y. Fang. 2004. A novel property of styrene-butadiene- styrene/clay nanocomposites: radiation resistance. J. Mater. Chem. 14: 209-213.

Structure and system are improved recently due to progress of transistor and integrated circuit. Screen printed electrode has advantage of low cost, easy modification and disposability that promote rapid development of electroanalysis. We studied three subjects of electroanalysis on clay minerals.
1. Electroanalysis of Surface Charge of Alkylammonium Intercalated Smectites
Electroanalysis of surface charge of alkylammonium intercalated smectites. In this subject, surface charge of alkylammonium intercalated smectites was studied by using electrochemical technique coupled with X-ray and IR instruments. The electrochemical behavior of paraquat clearly indicated an apparent difference of surface charge between Na-montmorillonite and ferruginous smectite, originated from octahedral and tetrahedral charge. Intercalated alkylammonium could change the surface charge characteristics of these two montmorillonite. The effect of alkylammonium in surface charge was found to increase with the carbon number of alkylammonium. The surface charge of ferruginous smectite was most affected by alkylammonium.
2. Application of electrochemical technique to study the catalysis of catechol by clay minerals
Application of electrochemical technique to study the catalysis of catechol by clay minerals. In this subject, the catalysis and polycondensation of catechol and glycine by clay minerals using screen-printed carbon electrode coupled with cyclic voltammetry. The results indicated electroanalytical technique is a rapid and convenient method in studying catalysis and polycondensation of catechol. The order of catalytic ability was ferruginous smectite > kaolinite > Na-montmorillonite. Ferruginous smectite had larger oxidative and reductive power due to the existence of Fe2+/3+ in octahedral layer, and hence its catalysis for catechol was much obvious than other clay minerals. Furthermore, porosity of clay film might affect clay-modified electrode in studying catalysis and polycondensation of catechol. Overall, cyclic voltammetry at different scan rate could be a rapid and convenient method in catalytic study of clay minerals. Porosity of clay film might affect clay-modified electrode in studying catalysis and polycondensation of catechol. Overall, cyclic voltammetry at different scan rate could be a rapid and convenient method in catalytic study of clay minerals.
3. Effects of clay minerals on electroanalysis of copper-plated screen printed electrode
Effects of clay minerals on electrochemical character of copper-plated screen printed electrode. In this subject, we modified copper-plated screen printed electrode with ferruginous smectite, Na-montmorillonite and kaolinite. Oxidative and reductive signals increased due to the adsorption of copper ion on clay minerals. We study the movement of paraquat in clay film. The results indicated the order of the signals of paraquat was ferruginous smectite > Na-montmorillonite > kaolinite. The Rpc and Rpa of clay modified copper-modified screen printed electrode were more than that of clay modified screen printed electrode. When paraquat was added, the order of the signals for copper was kaolinite > Na-montmorillonite > ferruginous smectite. That indicated electrochemistry od copper was affected by adsorption of copper ion on clay minerals and layer charge of clay minerals. Clay modified copper-plated screen printed electrode could determine larger current of paraquat, and movement of paraquat in clay film of clay modified copper-plated screen printed electrode was more than that of clay modified carbon electrode. Clay modified copper-plated screen printed electrode has larger potential for determination of some analytic compounds.
Electroanalysis has rapid, convenient, variable and inexpensive characters, and that has larger potential for studying clay minerals. Electroanalysis is a advantaged technique for development and popularization.

摘 要

利用網版印刷碳電極結合循環伏安法來探討黏土礦物對鄰苯二酚的催化作用與其和甘胺酸的聚縮反應,試驗結果指出利用電化學方法來探討黏土礦物對鄰苯二酚的催化和聚縮反應是一種迅速方便的方法,且由結果也得知三種黏土礦物對鄰苯二酚的催化與聚縮反應的大小順序為多鐵蒙特石 > 高嶺石 > 鈉蒙特石。多鐵蒙特石由於其八面體層中的 Fe2+/3+ 具有較大的氧化還原效能,故在鄰苯二酚的催化能力上較其它兩種黏土礦物明顯。以黏粒修飾電極的方式來探討催化和聚縮反應雖會受到黏粒膜層孔隙率所影響,但以不同掃描速率的方式來探討黏土礦物表面的催化效能亦不失為是一種迅速方便的方法。
銅網版印刷碳電極為電化學分析方法中一具有良好應用性的電極種類,在其表面以三種黏土礦物作修飾後,會因為黏土礦物對銅離子的吸附而增大銅的氧化、還原訊號。利用電化學活性物質巴拉刈作為探針物質,探討其在黏粒膜層中移動情形,試驗結果指出以三種黏粒修飾後,銅網版印刷碳電極因為銅離子的吸附,所偵測到的巴拉刈訊號大小為多鐵蒙特石 > 鈉蒙特石 > 高嶺石,且測得之 Rpc 與 Rpa 值皆比黏粒修飾網版印刷電極所測得之值為大。在銅的訊號上,由於巴拉刈的參與,測得的訊號大小依序為高嶺石 > 鈉蒙特石 > 多鐵蒙特石,反映出不同吸附能力與電荷種類影響銅的電化學活性表現。黏粒修飾銅網版印刷碳電極可以有效增大對巴拉刈的偵測訊號,且巴拉刈在黏粒修飾銅網版印刷碳電極之黏粒膜層中的移動也較在黏粒修飾網版印刷電極之黏粒膜層中快速,黏粒修飾銅電極未來在分析物的偵測上具有很大的潛力。
其他識別: U0005-2107200718374300
Appears in Collections:土壤環境科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.