Please use this identifier to cite or link to this item:
標題: 重金屬污染土壤之不同單一與連續性抽出方法評估
Evaluation of Different Single and Sequential Extraction Procedures of Soils Contaminated by Heavy Metals
作者: 鄭光喆
Zheng, Kuang-Zhe
關鍵字: heavy metal;重金屬;single extraction;soil;sequential extraction;aqua regia digestion;連續性抽出;土壤;單一性抽出;王水消化
出版社: 土壤環境科學系所
引用: 陸、參考文獻 1. 王銀波、李國欽、陳尊賢。1988。台灣土壤中重金屬資料庫與其含量分布。第一屆土壤污染防治研討會論文集。 2. 環境檢驗所。1994。土壤中陽離子交換容量-醋酸氨法(NIEA S201.60T)。行政院環保署。 3. 環境檢驗所。2003。土壤中重金屬檢測方法-王水消化法(NIEA S321.63B)。行政院環保署。 4. 環境檢驗所。2001a。土壤污染監測基準(環署水字第○○七三六五四號)。行政院環保署。 5. 環境檢驗所。2001b。土壤污染管制標準(環署水字第○○七三六八四號)。行政院環保署。 6. 洪崑煌。1981。土壤化學。p217-235。中央圖書出版社。 7. 柯勇。2004。植物生理學。p106-108。藝軒圖書出版社。 8. 李春樹。2003。銅鋅鉛在污染土壤中之化學形態及其萃取性研究。國立成功大學環境工程學研究所博士論文。P. 35。 9. 郭魁士。1990。土壤學。P.314。中國書局。 10. 莊佩祺。2003。土壤重金屬污染物化合物形態分布之影響因子探討。逢甲大學環境工程與科學研究所碩士論文。 11. 許緒廣。2004。以不同消化法比較土壤、底泥、堆肥、污泥及固體廢棄物之重金屬含量。國立屏東科技大學環境工程與科學研究所碩士論文。 12. 黃舒瑜。2003。土壤重金屬0.1N HCl萃取量與全量濃度相關性研究。逢甲大學環境工程與科學研究所碩士論文。 13. 黃榮茂、王禹文、林聖富、楊德仁。1987。化學化工百科辭典。曉園出版社。 14. 張尊國。2002。台灣地區土壤污染現況與整治政策分析。國政分析。 15. 張簡水紋。1994。電鍍廢水對土壤重金屬聚積型態與作物生長之影響。國立中興大學土壤環境科學研究所碩士論文。 16. 經濟部工業局。2005。金屬表面處理業土壤及地下水污染預防及整治技術手冊。 17. 廖自基。環境中微量重金屬元素的污染危害與遷移轉化。科學出版社。 18. 蕭英德。2004。攜帶式X光螢光分析儀介紹。勞工安全衛生簡訊第68期。 19. 魏孟麗、呂秀英。1999。決定係數(R2)在回歸分析中的解釋及正確使用。科學農業。47:341-345。 20. 羅良慧。1997。應用地理資訊系統於土壤鎘汙染危害評估方法之研究。國立中興大學資源管理研究所碩士學位論文。 21. Alloway, B. J. 1995. Heavy metal in soils (2nd edition). Blackie Academic and Proffessional, Glasgow, UK. 22. Adams, M. L., F. J. Zhao, S. P. McGrath, F. A. Nicholson and B. J. Chambers. 2004. Predicting cadmium concentrations in wheat and barley grain using soil properties. J. Environ. Qual. 33:532-541. 23. Alborés, A. F., B. P. Cid, E. F. Gómez and E. F. López. 2000. Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples. The Analyst. 125: 1353-1357. 24. Barreto, S. R. G., J. Nozaki, E. D. Oliveira, V. F. D. N. Filho, P. H. A. Aragão, I. S. Scarminio, and W. J. Barreto. 2004. Comparison of meyal analysis in sediment using EDXRF and ICP-OES with the HCl and Tessier extraction methods. Talanta. 64:345-354. 25. Basta, N. T., D. J. Pantone, M. A. Tabatabai. 1993. Path analysis of heavy metal adsorption by soil. Agron. J. 85:1054-1057. 26. Canepari, S., E. Cardarelli, S. Ghighi, and L. Scimonelli. 2005. Ultrasound and microwave-assisted extraction of metals from sediment: a comparison with the BCR procedure. Talanta. 66:1122-1130. 27. Cheam, V., J. Lechner, R. Desrosiers, I. Sekerka, J. Nriagu, and G. Lawson. 1993. Application of laser-excited atomic fluorescence spectrometer to study lead distribution in Great Lakes waters. Intern. J. Environ. Anal. Chem. 53:13-27. 28. Chuan, M. S., G. Y. Shu, and J. C. Liu. 1996. Solubility of heavy metals in a contaminated soil effects of redox potential and pH. Water, Air and Soil Pollut. 90:543-556. 29. D’Amore, J. J., S. R. Al-Abed, K. G. Scheckel and J. A. Ryan. 2005. Methods for speciation of metals in soils: a review. J. Environ. Qual. 34:1707-1745. 30. Darban, A. K., A. Foriero and R. N. Yong. 2000. Concentration effects of EDTA and chloride on the retention of trace metals in slays. Engin. Geol. 57:81-94. 31. Davidson, C. M., A. L. Duncan, D. Littlejohn, A. M. Ure, and L. M. Garden. 1998. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal. Chim. Acta. 363: 45-55. 32. Davidson, C. M., A. S. Hursthouse, D. M. Tognarelli, A. M. Ure and G.J. Urquhart. 2004. Should acid ammonium oxalate replace hydroxylammonium chloride in step 2 of the revised BCR sequential extraction protocol for soil and sediment? Anal. Chim. Acta. 508: 193-199. 33. Davidson, C. M., L. E. Wilson, A. M. Ure. 1999. Effect of sample preparation on the operational speciation of cadmium and lead in a freshwater sediment. Fresenius'' J. Anal. Chem. 363:134-136. 34. Davidson, C. M., P. C. S. Ferreira, A. M. Ure. 1999. Some sources of variability in application of the three-stage sequential extraction procedure recommended by BCR to industrially-contaminated soil. Fresenius J. Anal. Chem. 363: 446-451. 35. Doornmalen, J. van, J. T. van Elteren, and J. J. M. de Goeij. 2000. A chromatographic technique to investigate the lability of copper complexes under steady-state vonditions using high specific activity 64Cu. Anal. Chem. 72: 3043-3049. 36. Filgueiras, A.V., I. Lavilla, and C. Bendicho. 2002 Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 4:823-857. 37. Fytianos, K. and A. Lourantou. 2004. Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environ. International. 30:11-17. 38. Fuentes, A., M. Lioréns, J. Sáez, A. Sloer, M. I. Aguilar, J. F. Ortuño, V. F. Meseguer. 2004. Simple and sequential extractions of heavy metals from different sewague sludges. Chenosphere. 54: 1039-1047. 39. Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. InA. Klute et al.,(ed.)Methods of soil analysis. Part I. 2nd edition Agronomy. P.404-408. ASA. Madison. WI. 40. Gilbert, R. O. 1987. Statistical methods for environmental pollution monitoring. John Wiley & Sons, Inc. p106-117. 41. Gleyzes, C., S. Tellier and M. Atruc. 2002. Fraction studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. J. Anal. Chem. 21:451-467. 42. Guevara-Riba, A., A. Sahuquillo, R. Rubio, and G. Rauret. 2004. Assessment of metal mobility in dredged harbour sediments from Barcelona, Spain. Sci. Total Environ. 321:241-255. 43. Ho, M. D. and G. J. Evans. 2000. Sequential extraction of metal contaminated soils with radiochemical assessment of readsorption effects. Environ. Sci. Technol. 34:1030-1035. 44. Howard, J. L. and J. Shu. 1996. Sequential extraction analysis of heavy metals using a chelating agent (NTA) to counteract resorption. Environ. Pollut. 91:89-96. 45. ISO(International Organization for Standardization). 1995. Soil quality, Extraction of trace elements soluble in aqua regia. ISO 11466. 46. Jardine, P.M., S.E. Fendorf, M.A. Mayes, I.L. Larsen, S.C. Brooks, and W.B. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33:2939-2944. 47. Kaasalainen, M. and M. Yli-Halla. 2003 Use of sequential extraction to assess metal partitioning in soils. Environ. Pollut. 126: 225-233. 48. Kabata-Pendias, A. and H. Pendias. 2001. Trace elements in soils and plants(3rd edition). CRC Press, Boca Raton, FL, USA. 49. Kalin, D. J. and Singhvi R. 2001. Field portable XRF analysis of environmental samples. J. Hazar. Mater. 83: 93-122. 50. Kim, C., Y. Lee and S. K. Ong. 2003. Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere. 51:845-853. 51. Knight, B. P., A. M. Chaudri, S. P. McGrath and K. E. Giller. 1998. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environ. Pollut. 99: 293-298. 52. Lee, C.-S. and M.-M. Kao. 2004. Effect of extracting reagents and metal speciation on the removal of heavy metal contaminated soils by chemical extraction. J. Environ. Sci. and Health. A39:1233-1249. 53. Lindsay, W. L. and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42:421-428. 54. López-Sánchez, J. F., R. Rubio, C. Samitier and G. Rauret. 1996. Trace metal partitioning in mrine sediments and sludges deposited off the coast of Barcelona(Spain). Wat. Res. 30:153-159. 55. López-Sánchez, J. F., R. Rubio and G. Rauret. 1993. Comparison of two sequential extraction procedures for trace metal partitioning in sediments. Intern. J. Environ. Anal. Chem. 51:113-121. 56. Maiz, I., M. V. Esnaola and E. Millán. 1997. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Sci. Total Environ.. 206:107-115. 57. Maiz, I., I. Arambarri, R. Garcia and E. Millán. 2000. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ. Pollut. 110: 3-9. 58. Matos, A. T., M. P. F. Fontes, L. M. da Costa, M. A. Martinez. 2001. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ. Pollut. 111:429-435. 59. McGrath, D. 1996. Application of single and sequential extraction procedures to polluted and unpolluted soils. Sci. Tot. Environ. 178:37-44. 60. Mester, Z., C. Cremisini, E. Ghiara, R. Morabito. 1998. Comparison of two sequential extraction procedure for metal fractionation in sediment samples. Anal. Chim. Acta. 359:133-142. 61. Morera, M. T., J. C. Echeverría, C. Mazkiarán and J. J. Garrido. 2001. Isotherms and sequential extraction procedures for evaluation sorption and distribution of heavy metals in soils. Environ. Pollut. 113:135-144. 62. Mossop, K. F. and C. M. Davidson. 2003. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta. 478: 111-118. 63. Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. InA. L. Page(ed.) Methods of soil analysis. Part II. 2nd edition Agronomy. P.539-579. ASA. Madison. WI. 64. Nyamangara, J. 1998. Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts. Agric. Ecosyst. Environ.. 69:135-141. 65. Patrick, Jr. W. H. and M. Verloo. 1998. Distribution of soluble heavy metals between ionic and complexed forms in a saturated sediment as affected by pH and redox conditions. Wat. Sci. Tech. 37:165-172. 66. Pérez Cid, B., M. de Jesús González, E. Fernández Gómez. 2002. Comparison of single extraction procedures, using either conventional shaking or microwave heating, and the Tessier sequential extraction method for the fractionation of heavy metals from environmental samples. Analyst. 127:681-688. 67. Peters, R. W. 1999. Chelant extraction of heavy metals from contaminated soils. J. Hazar. Mater. 66:151-210. 68. Pueyo, M., J. Sastre, E. Hernández, M. Vidal, J. F. López-Sánchez and G. Rauret. 2003. Prediction of trace element mobility in contaminated soils by sequential extraction. J. Environ. Qual. 32: 2054-2066. 69. Pueyo, M., J. F. López-Sánchez and G. Rauret. 2004. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal. Chim. Acta. 504:217-226. 70. Quevauviller, Ph. 2002. Operationally-defined extraction procedures for soil and sediment analysis. Part 3: new CRMs for trace-element extractable contents. Trends in Analytical Chemistry. 21: 774-785. 71. Quevauviller, Ph. A. Ure, H. Muntau and B. Griepink. 1993. Improvement of analytical measurements within the BCR-programme: singles and sequential extraction procedures applied to soil and sediment analysis. Intern. J. Environ. Anal. Chem. 51:129-134. 72. Quevauviller, Ph., G. Rauret, J.F. López-Sánchez, R. Rubio, A. Ure, and H. Muntau. 1997. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci. Total Environ. 205:223-234. 73. Quevauviller, Ph., M. Lachica, E. Barahona, G. Rauret, A. Ure, A. Gomez, and H. Muntau. 1996. Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Sci. Tot. Environ. 178:127-132. 74. Rhoades, J. D. 1982. Cation exchange capacity. InPage et al., (ed.) Methods of soil analysis. Part II. 2nd edition Agronomy. P.149-157. ASA. Madison. WI. 75. Rapln, F., A. Tessier, P. G. C. Campbell, and R. Carignan. 1986. Potential artifacts in the determination of trace metal partitioning in sediments by a sequential extraction procedure. Environ. Sci. Technol. 20:836-840. 76. Rauret, G. 1998. Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta. 49:449-455. 77. Rubio, R. and A.M. Ure. 1993. Approaches to sampling and sample pretreatments for metal speciation in soils and sediments. Intern. J. Environ. Anal. Chem. 51:205-217. 78. Rubio, R., G. Rauret. 1996. Validation of the methods for heavy metal speciation in soils and sediments. J. Radioanalytical and Nuclear Chem. 208:529-540. 79. Sahuquillo, A., J. F. López-Sánchez, R. Rubio, G. Rauret, R.P. Thomas, C.M. Davidson, and A.M. Ure. 1999. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Anal. Chim. Acta. 382:317-327. 80. Sahuquillo, A., A. Rigol and G. Rauret. 2003. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. J. Anal. Chem. 22:152-159. 81. Salomons, W. 1993. Adoption of common schemes for single and sequential extractions of trace metal in soils and sediments. Intern. J. Environ. Anal. Chem. 51:3-4. 82. Sastre, J., A. Sahuquillo, M. Vidal and G. Rauret. 2002. Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal. Chem. Acta. 462:59-72. 83. Schultz, M. K., W. C. Burnett and K. G. W. Inn. 1998. Evaluation of a sequential extraction method for determining actinide fractionation in soils and sediments. J. Environ. Radioactivity. 40:155-174. 84. Schnug, E., J. Fleckenstein, and S. Haneklaus. 1996. Coca Cola is it! The ubiquitous extractant for micronutrients in soil. Communications in Soil Science and Plant Analysis USA. 27:1721-1730. 85. Sun, B., F. J. Zhao, E. Lombi and S. P. McGrath. 2001. Leaching of heavy metals from contaminated soils using EDTA. Environ. Pollut. 113:111-120. 86. Sutherland, R. A., and F. M. Tack. 2003. Fractionation of Cu, Pb and Zn in certified reference soils SRM2710 and SRM2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research. 8:37-50. 87. Ter Haar, G. L. and Bayard, M. A. 1971. Composition of Airbone lead particles. Nature. 232:553-554. 88. Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem.. 51:844-851. 89. Tüzen, M. 2003. Determination of trace metals in the Yesilırmak sediments in Tokat, Turkey using sequential extraction procedure. J. Microchemical. 74:105-110. 90. Ure, A. M. 1996. Single extraction schemes for soil analysis and related application. Sci. Total Environ. 178: 3-10. 91. Ure, A. M., Ph. Quevauviller, H. Muntal and B. Griepink. 1993. Speciation of heavy metals in soils and sediment. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission if the European communities. Intern. J. Environ. Anal. Chem. 51:135-151. 92. Vidal, M., J. F. López-Sánchez, J.Sastre, G. Jiménez, T. Dagnac, R. Rubio, and G. Rauret. 1999. Prediction of the impact of the Aznalcóllar toxic spill on the trace rlrmrnt contamination of agricultural soils. Sci. Total Environ. 242:131-148. 93. Yong, R. N., W. Z. W. Yaacob, S. P. Bentley, C. Harris, and B. K. Tan. 2001. Partioning of heavy metals on soil samples from column tests. Engine. Geol. 60: 307-322. 94. Xian, X. and Gholamhoss In Shokohifard. 1989. Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water, Air, & Soil Pollut. 45:265-273.
With industrial development and technical advance, some of the heavy metals used in artificial activities enter soil and cause contamination by improper handling. The most common method to determinate heavy metals in polluted soils is chemical extraction with different reagents. Chemical extractions includes single extractions and sequential extractions. Single extraction procedures extract heavy metals in soil by only one step, are usually time-saving, with easier process, and they can choose reagents for different purposes. Single extraction is suitable for differentiate mobility and bio-availability of heavy metals. Sequential extraction procedures extract different forms of heavy metals step by step, but they are time-consuming and with complicate process. However, sequential extraction procedures provide complete informations of different heavy metals forms in soil. It is possible to evaluate short-term and long-term impact of heavy metals against environment by sequential extraction results.
Recently, Taiwan conforms aqua regia digestion to regulate the control standard of heavy metal content in soil. However, this method cannot directly reflect the threat to environment by heavy metals. There are two objectives for this study. One is to compare the results of BCR and Tessier sequential extraction applying on six contaminated soils with different heavy metals content to understand the fractionations of the heavy metals. The other purpose is to apply seven single extraction procedures including H2O, 0.1M CaCl2, 0.11M HOAc, 0.005M DTPA, 0.05M EDTA, 0.1M HCl, 0.12M HNO3 and XRF detection on 30 samples with different heavy metals content, to compare the results from single extractions and aqua regia digestion and to evaluate the practicability of single extractions replacing aqua regia digestion by double sampling design.
Results of sequential extractions show that most of cadmium exists in exchangeable form than other heavy metals. In soils with low heavy metal concentration, most of copper and zinc are residual or reducible. In soils with high heavy metal concentration,most of copper and zinc would distribute in exchangeable form. Most of nickel and lead distribute in reducible or oxidisable form. Aqua regia digestion would overestimate the impact. chromium only distribute in reducible, oxidisable, and residual form. Few of chromium exist in exchangeable form, and it is harmless to the environment. Two sequential extractions lead to different results because of variation in methods. BCR procedure is an ideal method in terms of operation. Amont of heavy metals extracted by different single extraction reagent is in the following order: 0.1M HCl≥ 0.12M HNO3>0.05M EDTA>0.005M DTPA>0.11M HOAc>0.1M CaCl2>>H2O. 0.1M HCl extraction shows significant regression relationship between aqua regia digestion of Cd and Pb in these 30 samples. While results of 0.05M EDTA extraction show good regression relationship between aqua regia digestion of Cd, Cu and Pb. XRF detection shows the best regression relationship between aqua regia digestion in Cr, Ni, and Zn. It also shows significant regression relationship with aqua regia digestion of Cu and Pb. Applying double sampling to single extractions and aqua regia digestion shows 0.1M HCl can replace aqua regia digestion in Cd and Pb contaminated soils, XRF detection can replace aqua regia digestion in Cr, Cu, Ni or Zn contaminated soils. Analytical outlay can be saved and sample amount can be increased by applying two methods on specific polluted samples.

目前台灣對於土壤重金屬含量管制標準是以王水消化法所得重金屬總量為依據,然而此方法並不能直接反映出重金屬對環境之危害。本研究目的有二,第一是比較BCR與Tessier兩種連續性抽出法應用在六種受不同含量重金屬污染之土壤,了解重金屬存在之型態分布,並希望選擇出兩方法中較佳者。第二個目的則利用重金屬含量不同之30個樣品,使用七種單一性抽出(0.1M鹽酸、0.12M硝酸、0.11M醋酸、0.05M EDTA、0.005M DTPA、0.1M氯化鈣、水)以及X光螢光分析儀(XRF)與王水消化總量做比較,視彼此間相關性,以雙重採樣設計評估單一性抽出配合王水消化法使用,降低實際應用之花費的可行性。
連續性抽出結果顯示,鎘存在交換態的比例相對其他重金屬較高。銅與鋅在低濃度時主要分布在殘留態與可還原態,然而隨著總濃度提高,會轉變為以交換態分布為最多。鎳與鉛在土壤中有大部分是存在於可還原態或有機結合態,用王水消化法會高估危害性。而鉻只分布於可還原態、可氧化態及殘留態,幾乎沒有鉻以交換態的形式存在,相對來說在環境中較無害。兩種連續性抽出法由於方法不同導致結果差異,而BCR法以實驗操作的觀點來說較理想。單一性抽出試劑的抽出能力:0.1M 鹽酸 ≧ 0.12M 硝酸 > 0.05M EDTA>0.005M DTPA > 0.11M 醋酸 > 0.1M氯化鈣 >>水。0.1M鹽酸對於鎘與鉛的抽出,在30樣品的結果與王水消化之總量有極顯著的迴歸,0.05M EDTA在鎘、銅、鉛與總量間迴歸極顯著,而XRF除了在鉻、鎳及鋅的結果與總量間迴歸為各種方法中最佳之外,在銅與鉛也有顯著迴歸。雙重採樣設計以單一性抽出配合王水消化法之結果中,鎘與鉛適合以鹽酸抽出,鎳、銅、鉻及鋅可以XRF分析,對於不同重金屬分別利用不同分析方法可增加分析之樣品數而節省實驗費用。
其他識別: U0005-2708200710093800
Appears in Collections:土壤環境科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.