Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28099
標題: Effect of Long-term Fertilizers Application on Rhizosphere Fluorescent Pseudomonas
長期施用肥料對根圈螢光假單胞菌之效應
作者: Chang, Chen-Ying
張臻潁
關鍵字: Rhizosphere;根圈;Diversity;Fluorescent Pseudomonas;Biolog GN plate;16S rDNA RFLP;16S-23S rDNA RFLP;多樣性;螢光假單胞菌;Biolog GN plate;16S rDNA RFLP;16S-23S rDNA RFLP
出版社: 土壤環境科學系所
引用: 丁名哲。1996。醫用微生物學。合記圖書出版社。台北。pp.333-339。 王鐘和,艾慶平,丘麗蓉,林毓雯,鍾仁賜。2002。施用不同有機資材對玉米、水稻輪作田作物生產之影響。農業土壤生態品質及生產力研討會論文集。中興大學土壤環境科學系。台中。pp.181-218。 林清山。1990。多變項分析統計法(第五版)。東華書局。台北。pp.290-324。 林浩潭,賴七仙,李國欽,1994。有機肥料中重金屬含量調查及對作物生長影響之評估。植物保護學會會刊,36: 201-207. 金恆鑣,王瑞香,夏禹九。1997。生命多樣性與保育政策。生物科技與法律研究通訊,7:1-5。 莊作權,楊明富。1992。 水稻-田菁-玉米輪作制度下施用堆肥對土壤肥力之影響。中國農業化學會誌,30: 553-568。 陳水良。1994。有機農業的肥料與土壤。農藥世界,129: 67-69。 陳仁炫。2002。增進土壤生產力策略下之磷和鉀行為之研究。農業土壤生態品質及生產力研討會論文集。中興大學土壤環境科學系。台中。pp.104-128。 曾怡禎,張權英。2001。利用分子生物方法分析微生物社會的結構。中華民國行政院環保署環境保護分子生物策略論壇(Ⅲ)資料集。行政院環保署。台北。 楊秋忠。1990。果園土壤有機質之功能與利用。果樹營養與果園土壤管理研討會專輯。台灣省台中區農業改良場編印。台中。pp.65-72. 楊喜男。2003。 NCBI之BLAST生物資訊系統介紹。環檢雙月刊,47: 7-10。 蔡文成。1999。假單胞菌與其他非發酵性桿菌。微生物學。藝軒出版社。台北。pp.498-500。 黎裕,賈繼增,王天宇。1999。分子標記的種類及其發展。中國農科院作物品種资源研究所,4: 19-22。 趙震慶。2000。有機肥料對有機農耕法的一些困擾。有機質肥料應用技術研討會專刊。中華永續協會。台中。pp.96-102。 趙震慶,蘇楠榮,王銀波。1996。有機農耕法之土壤肥力的變遷。中華農學會報,新173:85-102。 趙維良,田見臻,趙震慶。1997。利用分子技術探討不同種類肥料對土壤微生物群聚組成的影響。中國農業化學會誌,35:252-262。 趙震慶,趙維良,楊秋忠。2004。不同農業生態系土壤中微生物生質量與脫氮作用。中華農業會報,5:401-415。 Aakra, A., J.B.Utaker, and I.F. Nes. 1999. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Int. J. Sys. Bacteriol. 49: 123-130. Ait Tayeb, L., E. Ageron, F. Grimont, and P.A. Grimont. 2005. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res. Microbiol. 156:763-773. Alef, K., and G.P. Sparling. 1995. Community structure: Differentiation by selective inhibition technique. In: Methods in Applied Soil Microbiology and Biochemistry (Alef K., and P. Nannipieri, eds.), pp.420-421, Acad. Press, London, UK. Anzai, Y., Y. Kudo, and H. Oyaizu. 1997. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int. J. Syst. Bacteriol. 47:249-251. Anzai, Y., H. Kim, J.Y. Park, H. Wakabayashi, and H. Oyaizu. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Sys. Evol. Microbiol. 50: 1563-1589. Ara, I., and T. Kudo. 2007. Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. J. Gen. Appl. Microbiol. 53:29-37. Asakawa, S., M., Akagawa-Matsushita, Y. Koga, and K. Hayano. 1998. Communities of methanogenic bacteria in paddy field soils with long-term application of organic matter. Soil Biol. Biochem. 30: 299-303. Atlas, R.M., A. Horowitz, M. Krichevsky, and A.K. Bej. 1991. Response of microbial population to environmental disturbance. Microb. Ecol. 22:249-256. Badalucco, L., and P.J. Kuikman. 2001. Mineralization and immobilization in the rhizosphere. In: The Rhizosphere. Biochemistry and Organic Substances at the Soil–Plant Interface (Pinton, R., Z. Varanini, P. Nannipieri, P. eds.), pp.141-196, Marcel Dekker, New York, USA. Baker, C.J.O., R.R. Fulthorpe, and K.A. Gilbride. 2003. An assessment of variability of pulp mill wastewater treatment system bacterial communities using molecular methods. Water Qual. Res. J. Canada. 38: 227-242. Bardgett, R.D., R.D. Lovell, P.J. Hobbs, and S.C. Javris. 1999. Seasonal changes in soil microbial communities along a fertility gradient of temperate of temperate grasslands. Soil Biol. Biochem. 31: 1021-1030. Bashan, Y., and G. Olguin. 1998. Proposal of the diversity of plant growth promoting rhizobacteria into two classifications: biocontrol-PGPB (plant-growth promoting bacteria) and PGPB. Soil Biol. Biochem. 30:1225-1228. Bazin, M. J., P. Markham, E. Scott, and J.M. Lynch. 1990. Microbial interactions in the rhizosphere. In: The Rhizosphere (Lynch, J.M. ed.), pp.99-127. John Wiley and Sons, New York, USA. Bei, A.K., M. Perlin, and R.M. Atlas, 1992. Effect of introducing genetically engerneered microorganisms on soil microbial community diversity. FEMS Microbiol. Ecol. 86:169-176. Benizri, E., S. Piutti, S. Verger, S., L. Pagès, G. Vercambre, J.L. Poessel, and P. Michelot. 2005. Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem. 37: 1738-1746. Bergey’s Manual of Systematic Bacteriology volume 1 (1984) Based on Bergey’s Manual of Determinative Bacteriology. Includes index Bacteriology-Classification. I. Bergey, D. H. 1860-1937. II. Holt, John G. III. Krieg, Noel R. IV. Bergey’s Manual of Determinative Bacteriology. pp.174-176. Bergsma-Vlami, M., M.E. Prins, and J.M. Raaijmakers. 2005. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol. Ecol. 52: 59-69. Biederbeck, V.O., C.A. Canpbell, and J.H. Hunter. 1997. Tillage fallow-wheat rotation in a dark brown Soil. Can. J. Soil Sci. 77:309-316. Bossio, D.A., M.S. Girvan, L. Verchot, J. Bullimore, T. Borelli, A. Albrecht, K.M. Scow, A.S. Ball, J.N. Pretty, and A.M. Osborn. 2005. Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microbiol. Ecol. 49:50-62. Brun R., H. Hecker, and Z.R. Lun. 1998. Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship. Vet. Parasitol. 79:95-107. Brunsbach, F. R., and W. Reinele. 1993. Degradation of chlorobenzoates in soil slurry by special microorganisms. Appl. Microbiol. Biotech. 39:117-122. Burkholder, W.H. 1950. Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117. Campbell, C.D., S.J. Grayston, and D.J. Hirst. 1997. Use of rhizsophere carbon sources in sole carbon source tests to discriminate soil microbial communities. J. Microbiol. Methods 30: 33-41. Campbell, C.D., J. Stephen, C.M. Chapman, M.S. Cameron, M.S. Davidson, and J.M. Potts. 2003. A Rapid Microtiter Plate Method To Measure Carbon Dioxide Evolved from Carbon Substrate Amendments so as To Determine the Physiological Profiles of Soil Microbial Communities by Using Whole Soil. Appl. Environ. Microbiol. 69:3593-3599. Chao, C.C., and C.C. Young. 1994. Enhancement of denitrification by green manure. In: Soil Processes and Greenhouse Effect (Lal, R., J. Kimble and E. Levine eds.), pp.145-155, USDA, Soil Conservation Service, National Soil Survey Center, Lincon, NE. Chao, W.L., and C.C. Chao. 1997. Nitrogen transformation in tropical soils: influence of fertilization and crop species. Agric. Ecosys. Environ. 64: 11-17. Chiarini, L., A. Bevivino, and S. Tabacchioni. 1994. Factors affecting the competitive ability in rhizosphere colonization of plant-growth promoting strains of Burkholderia cepacia. In: Improving Plant Productivity with Rhizosphere Bacteria (Ryder, M.H., P.M. Stephens and G.D. Bowen, eds.), pp. 204-206, CSIRO, Australia. Cox, C.D., and P. Adams. 1985. Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect. Immun. 48:130-138. Crecchio, C., M. Curci, R. Mininni, P. Ricciuti, and P. Ruggiero. 2001. Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity. Biol. Fert. Soils 34:311-318. Daffonchio, D., A. Cherif, L. Brusetti, A. Rizzi, D.A. MoraBoudabous, and S. Borin. 2003. Nature of polymorphisms in 16S-23S rRNA gene intergenic transcribed spacer fingerprinting of Bacillus and related genera. Appl. Environ. Microbiol. 69: 5128-5137. Dalmastri, C., L. Chiarini, C. Cantale, A. Bevivino, and S. Tabacchioni. 1999. Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb. Ecol. 38: 273-284. Darwish, A.M., and A.A. Ismaiel. 2005. Genetic diversity of Flavobacterium columnare examined by restriction fragment length polymorphism and sequencing of the 16S ribosomal RNA gene and the 16S-23S rDNA spacer. Mol. Cell. Probes. 19: 267-274. De Eugenio, L., P. Garcia, J.M. Luengo, J.M. Sanz, J.S. Roman, J.L. Garcia, and M.A. Prieto. 2007. Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442: Characterization of a paradigmatic enzyme. J. Biol. Chem. 282: 4951-4962. Degens, B.P. 1998. Microbial functional diversity can be influenced by the addition of simple organic substrate to soil. Soil Biol. Biolchem. 30:1981-1988. Delorme, T.A., J.V. Gagliardi, J.S. Angle, P. van Berkum, and R.L. Chaney. 2003. Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a zinc and cadmium contaminated soil. Soil Sci. Soc. Am. J. 67:1746-1754. Denton, M., and K. Kerr. 1998. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 11:57-80. Di Cello, F., A. Bevivino, L. Chiarini, R. Fani, D. Paffetti, S. Tabacchioni, and C. Dalmastri. 1997. Biodiversity of a Burkholderia cepacia population isolates from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol. 63:4485-4493. Elmerich, C., E.W. Zimmer, and C. Vielle. 1992. Associative nitrogen fixing bacteria. In: Biological Nitrogen fixation (Stacey, G., R. Burris, and H. Evans, eds.), pp. 212-225, Chapman and Hall, New York, USA. Efron, B. 1979. Bootstrap methods: another look at the jackknife. Ann. Statist. 7:1-26. Fauci, F., and R.P. Dick. 1994. Soil microbial dynamics: Short and long-term effects of inorganic and organic nitrogen. Soil Sci. Soc. Am. J. 58:801-806. Felsenstein, J. 1984. Distance methods for inferring phylogenies: a justification. Evolution 38:16-24. Ferris, M.J., G. Muyzer, and D.M. Ward. 1996. Denaturing gradient gel electrophoresis of 16S rRNA-defined populations inhabiting a hot spring microbial community. Appl. Environ. Microbiol. 62:340-346. Fitch, W. M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Sys. Zool. 20:406-416. Frey, N.K., J.K. Fredrickson, S. Fishbain, M. Wagner, and D.A. Stahl. 1997. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl. Environ. Microbiol. 63:1498-1504. Funakawa, S., S. Tanaka, H. Shinjyo, T. Kaewhongkha, T. Hattori, and K. Yonebayashi. 1997. Ecological study on the dynamics of soil organic matter and its related properties in shifting cultivation systems of northern Thailand. Soil Sci. Plant Nutr. 43:681-693. Garbeva, P., J.A. Van Veen, and J.D. Van Elsas. 2004. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol. Ecol. 47:51-64. Garland, J.L. 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biol. Biochem. 28:223-230. Germida, J., and S. Siciliano. 2001. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol. Fert. Soils 33:410-415. Gill, S., and J. Belles-Isles. 1994. Identification of variability of ribosomal DNA spacer from Pseudomonas soil isolates. Can. J. Microbiol. 40: 541-547. Girvan, M.K. 2003. Examining dispersal and migratory connectivity in Cerulean warblers (Dendroica cerulea) using stable isotope analysis. MSc Thesis, Queen’s University, Kingston, ON, Canada. Golovleva, L.A., and G.K. Skryabin. 1981. Microbial degradation of DDT. In: Microbial Degradation of Xenobiotics and Recalcitrant Compounds (Leisinger, T., A.M. Cook, R. Hutter, and J. Neusch, eds.), pp.287-292, Academic Press, London, UK. Guan, L.L., K.E. Hagen, G.W. Tannock, D.R. Korver, G.M. Fasenko, and G.E. Allison. 2003. Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Appl. Environ. Microbiol. 69:6750-6757. Gunapala, N., and K.M. Scow. 1998. Dynamics of soil microbial biomass and activity in conventional and organic farming systems Soil Biol. Biochem. 30:805-806. Hallmann, J., A. Quadt-Hallmann, W.F. Mahaffee, and J.W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895-914. Haas, D., and C. Keel. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phylopath. 41:117-153 Haas, D., and G. Defago. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev. Microbiol. 3:307-319. Harder, T., C.K.S. Lau, S. Dobretsov, T.K. Fang, and P.Y. Qian. 2003. A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest chemical mechanism against bacterial epibiosis. FEMS Microbiol. Ecol. 43:337-347. Hassink, J., G. Lebbink, and J.A. van Veen. 1991a. Microbiol biomass and activity of a reclaimed-input farming system. Soil Biol. Biochem. 23:507-513. Hassink, J., J.H.Oude Voshaar, E.H. Nijhuis, and J.A. van Veen. 1991b. Dynamics of the microbial populations of a reclaimed-polder soil under a conventional and a reduced-input farming system. Soil Biol. Boichem. 23:515-524. Haynes, R.J., and R. Naidu. 1998. Influence of lime, fertilizer and manure application on soil organic matter content and soil physical conditions: a review. Nutri. Cycl. Agroecosyst. 51:123-137. Hernández-Apaolaza, L., J.M. Gascó, and F. Guerrero. 2000. Initial organic matter transformation of soil amended with composted sewage sludge. Biol. Fert. Soils 32:421-426. Heyndrickx, M., L. Vauterin, P. Vandamme, K. Kersters, and P. De Vos. 1996. Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J. Microbiol. Method 26:247-259. Hill, G.T., N.A. Mitkowski, L. Aldrich-Wolfe, L.R. Emele, D.D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S.T. Lynch, and E.B. Nelson. 2000. Methods for assessing the composition and diversity of soil microbial communities. Appl. Soil Ecol. 15:23-36. Hirano, K., M. Hayatsu, I. Nioh, and H. Nakai. 2001. Comparison of Nitrogen-fixing bacterial flora of rice rhizosphere in the fields treated long-term with agrochemicals and non-agrochemicals. Microbes Environ. 16:155-160. Hoffland, E., G.R. Findenegg, and J.A. Nelemans. 1989. Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P starvation. Plant Soil 113:161-165. Holger, H., K. Martin, B. Paul, S. Kornelia, and M.H.W. Elizabeth. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63:3233-3241. Holloway, B. 1992. Pseudomonas in the late twentieth century. In: Pseudomonas Molecular Biology and Biotechnology (Galli, E., S. Silver and B. Witholt, eds.), pp.1-8, American Society for General Microbiology, Washington, DC, USA. Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24:417-441, 498-520. Ikenaga, M., Y. Muraoka, K. Toyota, and M. Kimura. 2002. Community structure of the microbiota associated with nodal roots of rice plants along with the growth stages: estimation by PCR-RFLP analysis. Biol. Fert. Soils 36:397-404. Jay, J.M. 2000. Taxonomy, role, and significance of microorganisms in food. In Modern Food Microbiology, pp. 13. Aspen Publishers, Gaithersburg, MD. Johnsen K., S. Andersen, and C.S. Jacobsen. 1996. Phenotypic and genotypic characterization of phenanthrene degrading fluorescent Pseudmonas biovars. Appl. Environ. Microbiol. 62:3818-3825. Jonasson, S., A. Michelsen, I. Schmidt, E.V. Nielsen, and T.V. Callaghan. 1996. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia. 106:507-515. Jones, D.L., and P.R. Darrah. 1994. Role of root derived organic acid in the mobilization of nutrients from the rhizosphere. Plant Soil 166: 247-257. Karns, J.S., J.J. Kilbane, S. Duttagupta, and A.M. Chakrabarty. 1983. Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl. Environ. Microbiol. 46:1176-1181. Kennedy, A.D., and K.L. Smith. 1995. Soil microbial diversity and the sustainability of agriculture soil. Plant Soil 170:75-86. Kessler, B., and N.J. Palleroni. 2000. Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads. Int. J. Syst. Evol. Microbiol. 50:711-713. Kimura, M., T. Shibagaki, Y. Nakajima, K. Matsuya, and M. Ikenaga. 2002. Community structure of the microbiota in the floodwater of a Japanese paddy field estimated by restriction fragment length polymorphism and denaturing gradient gel electrophoresis pattern analyses. Biol. Fert. Soils 36:306-312. Kloepper, J.W., R.M. Zablotowicz, E.M. Toppimg, and R.Lofshiz. 1991. Plant growth promotion mediated by bacterial rhizosphere colonizers. In: The Rhizosphere and Plant Growth (Keister, D.L. and P.B. Cregan, eds.), pp. 315-326, Kluwer Acad. Pub. Dordrecht, The Netherlands. Kuzyakov, Y. 2002. Review: Factors affecting rhizosphere priming effects. J. Plant Nutr. Soil Sci. 165:382-396. Kwon, H.S., E.H. Yang, S.H. Lee, S.W. Yeon, B.H. Kang, and T. Y. Kim. 2005. Rapid identification of potentially probiotic Bifidobacterium species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol. Lett. 250: 55-62. Laguerre, G., L. Rigottier-Dois, and P. Lemanceau. 1994. Fluorescent Pseudomonas species categorized by using polymerase chain reaction (PCR)/restriction fragment analysis of 16S rDNA. Mol. Ecol. 3:479-487. LaMontagne, M.G., I. Leifer, S. Bergmann, L.C. Van De Werfhorst, and P.A. Holden. 2004. Bacterial diversity in marine hydrocarbon seep sediments. Environ. Micro. 6:799-808. Latour, X., T. Corberand, G. Laguerre, F. Allard, and P. Lemanceau. 1996. The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62:2449-2456. Lee, K.E. 1994. The biodiversity of soil organisms. Appl. Soil Ecol. 1: 251-254. Lemanceau, P., T. Corberand, L. Gardan, X. Latour, G. LAguerre, J.M. Boeufgras, and C. Alabouvette. 1995. Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl. Environ. Microbiol. 61:1004-1012. Lottmann, J., and G. Berg. 2001. Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenetic and non-transgenetic potato plants. Microbiol. Res. 156: 75-82. Lowe, A.J., O. Hanotte, and L. Garino. 1996. Standardization of molecular genetic techniques for the characterization of germplasm collection: the case of random amplified polymorphic DNA (RAPD). Plant Gen. Res. Newsletter. 107:50-54. Lynch, J.M., and E. Bragg. 1985. Microorganism and soil aggregate stability. Adv. Soil Sci. 2:133-171. Lynch, J.M. 1990. Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: The Rhizosphere. (Lynch, J.M. ed.), pp. 1-10. John Wiley and Sons, New York, USA. Lynch, J.M., and J.M. Whipps. 1990. Substrate flow in the rhizosphere. Plant Soil. 129: 1-10. Mabuhay, J.A., Y. Isagi, and N. Nakagoshi. 2004. Microbial biomass, abundance and community diversity determined by terminal restriction fragment length polymorphism analysis in soil at varying periods after occurrence of forest fire. Microb. Environ. 19:154-162. Mahaffee, W.F., and J.W. Kloepper. 1997. Temporal changes in the bacterial communities of soil, Rhizosphere and endorhiza associated with field grown cucumber (Cucumis sativ us L.). Microb. Ecol. 34:210-223. Marumoto, T. 1984. Mineralization of C and N from microbial biomass in paddy soil. Plant Soil 76:165-173. Massol-Deya, A.A., D.A. Odelson, R.F. Hickey, and J.M. Tiedje. 1995. Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequence and restriction endonuclease analysis (ARDRA). Mol. Microb. Ecol. Manual 3.2.2:1-8. Mattens, R. 1995. Current methods for measuring microbial biomass C in soil: Potential limitations. Biol. Fert. Soils 19:87-99. Matson, P.A., W.J. Parton, A.G. Power, and M.J. Swift. 1997. Agricultural intensification and ecosystem properties. Science 277: 504-509. McAndrew, D.W., and S.S. Malhi. 1992. Long-term N fertilization of a solonetzic soil: Effect on chemical and biological properties. Soil Biol. Biochem. 24:619-623. McDonald, W.L., B.N. Fry, and M.A. Deighyon. 2005. Identification of Streptococcus spp. Causing bovine mastitis by PCR-RFLP of 16S-23S ribosomal DNA. Vet. Microbiol. 111:241-246. Menzel, R. G. 1991. Soil science: the environmental challenge. Soil Sci. 151:24-29. Misko, A.L., and J.J. Germida. 2002. Taxonomic and functional diversity of pseudomonads isolated from the root of field-grown canola. FEMS Microbiol. Ecol. 42:399-407. Miyasaka S.C., and M. Habte. 2001. Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Comm. Soil Sci. Plant Anal. 32:1101-1147. Moelbak, L., S. Molin, and N. Kroer. 2007. Root growth and exudate production define the frequency of horizontal plasmid transfer in the rhizosphere. FEMS Microbiol. Ecol. 59: 167-176. Moody, P.W., and R.L. Aitken. 1997. Soil acidification under some tropical agricultural systems. 1.Rates of acidification and contributing factors. Aust. J. Soil Sci. 35:163-173. Moralejo, P., S.M. Egan, E. Hidalgo, and J. Aguilar. 1993. Sequencing and characterization of a gene cluster encoding the enzymes for l-rhamnose metabolism in Escherichia coli. J. Bacteriol. 175:5585-5594. Morris, V.B., J. Brammall, M. Byrne, and M. Frommer. 2002. cDNA Hox sequences 3 of the homeobox isolated from the sea urchin Holopneustes purpurescens are definitive for sea urchin Hox orthologues. DNA Sequence 13:185-193. Morris, C.E., M. Bardin, O. Berge, P. Frey-Klett, N. Formin, H. Girardin, M. Guinebretiere, P. Lebaron, J.M. Thiery, and M. Troussellier. 2002. Microbial biodiversity: Approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiol. Mol. Biol. Rev. 66:592-616. Muyzer, G., E.C. De Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700. Obradors, N., J. Badía, L. Baldomà, and J. Aguilar. 1988. Anaerobic metabolism of the L-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium. J. Bacteriol. 170:2159-2162. Ochi, K. 1995. Comparative ribosomal protein sequence analyses of a phylogenetically defined genus, Pseudomonas, and its relatives. Int. J. Syst. Bacteriol. 45:268-273. Okabe, S., H. Satoh, and Y. Watanabe. 1999. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65:3182-3191. Olivares-Fuster, O., C.A. Shoemaker, P.H. Klesius, and C.R. Arias. 2007. Molecular typing of isolates of the fish pathogen, Flavobacterium columnare, by single-strand conformation polymorphism analysis. FEMS Microbiol. Lett. 269: 63-69. Oshiman, K., Y. Tsutsumi, T. Nishida, and Y. Matsumura. 2007. Isolation and characterization of a novel bacterium, Sphingomonas bisphenolicum strain AO1, that degrades bisphenol A. Biodegradation. 18:247-255. Pagel, M., 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Land. B. 255:37-45. Palleroni, N.J., and B. Holmes. 1981. Pseudomonas cepacia sp. nov., nom. rev. Int. J. Syst. Bacteriol. 31:479-481. Palleroni N.J., and J.F. Bradbury. 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 43:606-609. Pascual, J.A., T. Hernandez, C. Garcia, F.A.A.M. de Leij, and J.M. Lynch. 2000. Long-term suppression of Pythium ultimum in arid soil using fresh and composted municipal wastes. Biol. Fert. Soils 30:478-484. Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Phil. Mag. 2:559-572. Pennanen, T., J. Liski, E. Bååth, V. Kitunen, J. Uotila, C.J. Westman, and H. Fritze. 1999. Structure of microbial communities in coniferous forest soils in relation to site fertility and stand development stage. Microb. Ecol. 38:168-179. Picard, C., F. Di Cello, M. Ventura, R. Fani, and A. Guckert. 2000. Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66:948-955. Rangarajan, S., L.M. Saleena, and S. Nair. 2002. Diversity of Pseudomonas spp. isolated from rice rhizosphere populations grown along a salinity gradient. Microb. Ecol. 43:280-290. Ray, B. 1996. Spoilage of specific food groups. In: Fundamental Food Microbiology, pp.220, CRC Press, Boca Raton FL. Rekha, P.D., W.A. Lai, A.B. Arun, and C.C. Young. 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour. Technol. 98: 447-451. Revelles, O., R. M. Wittich, and J. L. Ramos. 2007. Identification of the Initial Steps in D-Lysine Catabolism in Pseudomonas putida. J. Bacteriol. 189: 2787-2792. Ridley, M. 1983. The explanation of organic diversity: the comparative method and adaptations for mating. Oxford University Press, Oxford, UK. Roos, I.L., Y. Alami, P.R. Harvey, W. Achouak, and M.H. Ryder. 2000. Genetic diversity and biological control activity of novel species of closely related pseudomonads isolates from wheat field soils in south Australia. Appl. Environ. Microbiol. 66:1609-1615. Rosales, A., L. Thomashow, R. Cook, and T. Mew. 1995. Isolation and identification of antifungal metabolite produced by rice-associated antagonistic Pseudomonas spp. Phylopathology 85:1028-1032. Rotthauwe, J.H., K.P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing Appl. Environ. Microbiol. 63:4704-4712. Rovira, A.D. 1956. Plant root excretions in relation to the rhizosphere effect, Plant Soil 7:195-208. Sands, D.C., and A.D. Rovira. 1970. Isolation of fluorescent pseudomonads with a selective medium. Appl. Environ. Microbiol. 20:513-514. Sangari, F.J., J.R. Goodman, and L.E. Bermudez. 2000. Ultrastructural study of Mycobacterium avium infection of HT-29 human intestinal epithelial cells. J. Med. Microbiol. 49:139-147. Schnitzer, M., 1991. Soil organic matter, the next 75 years. Soil Sci. 151: 41-58. Schwieger, F., and C.C. Tebbe. 1998. A New Approach to Utilize PCR-single Strand-conformation Polymorphism for 16S rRNA Gene-based Microbial Community Analysis. Appl. Environ. Microbiol. 64:4870-4876. Scortichini, M., U. Marchesi, M.P. Rossi, and P. Di Prospero. 2002. Bacteria associated with Hazelnut (Corylus avellana L.) decline are of two groups: Pseudomonas avellanae and strains resembling P. syringae pv. Syringae. Appl. Environ. Microbiol. 68:476-484. Sena, M.M., R.T.S. Frighetto, P.J. Valarini, H. Tokeshi, b and R.J. Poppi. 2002. Discrimination of management effects on soil parameters by using principal component analysis: a multivariate analysis case study. Soil Till. Res. 67:171-181. Siciliano, S.D., C.M. Theoret, J.R. Freitas, P.J. de Hucl, and J.J. Germida. 1998. Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Can. J. Microbiol. 44:844-851. Singh, B.K., S. Munro, J.M. Potts, and P. Millard. 2007. Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl. Soil Eco. 36:247-255. Singh, H., and K.P. Singh.1993. Effect of residue placement and chemical fertilizer on soil microbial biomass under tropical dryland cultivation. Biol. Fert. Soils 16:275-281. Sinigalliano, C.D., D.N. Kuhn, and R.D. Jones. 1995. Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl. Environ. Microbiol. 61:2702-2706. Sinsabaugh, N.A., and G.N. Howard. 1975. Emendation of the description of Pseudomonas cepacia Burkholder (Synonyms: Pseudomonas multivorans Stanier et al., Pseudomonas kingae Johnson; EO-1 group). Int. J. Syst. Bacteriol. 25:187-201. Sitnikova, T., 1996. Bootstrap method of interior-branch test for phylogenetic trees. Mol. Biol. Evol. 13:605-611. Skerman, V.B.D., McGowan, V. and P.H.A. Sneath. 1980. Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225-420. Smalla, K., U. Wachtendorf, H. Heuer, W.T. Liu, and L. Forney. 1998. Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl. Environ. Microbiol. 64:1220-1225. Sorensen, J. 1997. The rhizosphere as a habitat for soil microorganisms. In: Modern Soil Ecology (van Elsas, J.D., J.T. Trevors and E.M.H. Welington. eds.), pp. 21-46, Marcel Dekker, New York, USA. Sperry, J.F., and D.C. Robertson. 1975. Erythritol catabolism by Brucella abortus. J. Bacteriol. 121:619-630. Stackebrandt, E., W. Liesack, and D. Witt. 1992. Ribosomal RNA and ribosomal DNA sequence analyses. Gene 115:255-260. Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159-275. Stephen, J.R., G.A. Kowalchuk, M.A.V. Bruns, A.E. McCaig, C.J. Phillips, T.M. Emble, and J.I. Prosser. 1998. Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol. 64:2958-2965. Stephen, J.R., A.E. McCaig, Z. Smith, J.I. Prosser, and T.M. Embley. 1996 Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62: 4147-4154. Stevenson, F.J. 1982. Humus Chemistry: Genesis, Composition, Reactions. pp. 36-42, Wiley and Sons, New York, USA. Stone, D.L.R., D.A. Whitney, K.A. Janssen, and J.H. Long. 1991. Soil properties after twenty years of fertilization with different nitrogen sources. Soil Sci. Soc. Am. J. 55:1097-1100. Timonin, M.I. 1940. The interaction of hier plants and soil microorganisms.I. Microbiol. Population of rhizosphere of seelding of certain cultivated plants. Can. J. Res. 18:307-317. Tiquia, S.M., J. Lloyd, D.A. Herms, H.A.J. Hoitink, and F.C. Michel Jr. 2002. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Appl. Soil Ecol. 21:31-48. Tobin, K.M., J.W. McGrath, A. Mullan, J.P. Quinn, and K.E. O'' Connor. 2007. Polyphosphate accumulation by Pseudomonas putida CA-3 and other medium-chain-length polyhydroxyalkanoate-accumulating bacteria under aerobic growth conditions. Appl. Environ. Microbiol. 73: 1383-1387. Torsvik, V.J., J. Goksoyr, F.L. Daae, R. Sorheim, J. Michalsen, and K. Salte, 1994. Use of DNA analysis to determine the diversity of microbial communities. In: Beyond the Biomass (Ritz, K., J. Dighton, K.E. Giller, eds.), pp.39-48, John Wiley and Sons, Chichester, UK. Trolldenier, G. 1977. Mineral nutrition and reduction processes in the rhizosphere of rice. Plant Soil 47:193-202. Tscherko, D., U. Hammesfahr, M.C. Marx, and E. Kandeler. 2004. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol. Biochem. 36:1685-1698. Valinsky, L., G. Della Vedova, A.J. Scupham, S. Alvey, A. Figueroa, B. Yin, R.J. Hartin, M. Chrobak, D.E. Crowley, T. Jiang, and J. Borneman. 2002. Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl. Environ. Microbiol. 68:3243-3250. Van de Peer, Y., S.A. Rensing, U.-G. Maier, and R. De Wachter. 1996. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc. Natl. Acad. Sci. USA 93:7732-7736. Van den Mooter, M., and J. Swings. 1990. Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. Int. J. Sys. Bacteriol. 40:348-369. Van Veen, J.A., L.S. van Overbeek, and J.D. van Elsas. 1997. Fate and activity of microorganisms introduced into soil. Micro. Mol. Biol. Rev. 61:121-135. Vermeer, K. 1981. The importance of plankton to Cassin''s Auklets during
摘要: 
The genetic and functional diversities of rhizosphere fluorescent Pseudomonas were both assayed to detect the effect of long-term fertilizer application. Soil samples were collected from an expermental field in Taichung County that had been applied hog-dung compost or chemical fertilizers for six years, and soil that without any applicaiton was also collected as the control treatment. Soil samples were used for the pot culture for maize or rice in labortory. Each plant was cultured with three different treatments of compost, chemical fertilizer and control, and four replicates were set for each treatment. After compost application for six years, the soil pH, organic content and the organic carbon content were significant higher (P<0.05) than the control soil. After the long-term chemical fertilizer applicaiton, few maize rhizosphere fluorescent Pseudomonas isolates revealed different Biolog GN plates substrate utilization patterns from isolates of the other two treatments. This indicated that the substrate utilization patterns of fluorescent Pseudomonas isolates were shifted after long-term chemical fertilizer application. After the long-term compost application, the fluorescent Pseudomonas community in maize rhizosphere consisted of Pseudomonas putida (61%) and Pseudomonas hibiscicola (30%), while that in control treatment was mostly consisted of P. putida (80%). This indicated the long-term compost application effect on fluorescent Pseudomonas community structure. P. putida isolates of compost treatment revealed similar carbohydrateds utilization ability to P. putida isolate of control treatment. However, P. putida of compost treatment revealed significant higher (P<0.05) utilization ability of i-erythritol and L-rhamnose than P. putida isolates of control treament. P. putida isolates of control treatment revealed significant (P<0.05) higher utilization ability of carboxylic acids, such as cis-aconitic acid, citric acid and formic acid, than P. putida isolates of compost treatment. This indicated different metabolic patterns between same species isolates after long-term compost application. The result of pot culture of rice plant found that some isolates of compost treatment revealed same 16S rDNA RFLP patterns with some isolates of chemical fertilizers, however, different metabolic patterns were found among isolates. Few isolates of chemical fertilizer treatment revealed similar metabolic patterns of isolates of control treatment, however, different genetic patterns were revealed among those isolates. This indicated that the effect of long-term chemical fertilizer applicaiton on metabolic pattern of fluorescent Pseudomonas in rice rhizosphere was similiar to that of control treatment. And long-term compost application resulted in a shift of metabolic patterns of fluorescent Pseudomonas in rice rhiosphere. 16S-23S rDNA RFLP method was used for analysis of 11 fluorescent Pseudomonas isolates of maize rhizosphere in this study. Different patterns were revealed among isolates that belong to different sub-species. This indicated that 16S-23S rDNA RFLP method was able to identify rhizosphere fluorescent Pseudomonas in a high resolution level, and this method was sutible to be used for the fast analysis of rhizosphere fluorescent Pseudomonas isolates.

本試驗從基因多樣性以及生理代謝特性共同探討長期施用化學肥料或豬糞堆肥對根圈螢光假單胞菌之影響效應。將採自台中縣 霧峰鄉農業試驗所試驗田已連續六年施用豬糞堆肥或化學肥料之田間土壤,進行水稻或玉米的杯栽試驗,同時採相同田區連續六年未施肥之土壤為對照處理。連續施用六年堆肥後,土壤之pH值、有機質含量及有機碳量等均顯著高於未施肥土壤。玉米及水稻杯栽試驗設置堆肥、化肥與對照三種處理,每種處理四重複。自長期施化肥處裡所分離的玉米根圈螢光假單胞菌,部分分離株對Biolog GN plate的基質代謝型態與另二種處理的分離株不同,顯示長期施用化學肥料後部分螢光假單胞菌產生代謝特性偏移的現象。長期施用豬糞堆肥處理之螢光假單胞菌群落由Pseudomonas putida(61%)以及 Pseudomonas hibiscicola(30%)共同組成,與對照處理以P. putida為主(80%)的組成不同,顯示長期施用堆肥影響玉米根圈螢光假單胞的群落結構。豬糞堆肥處理下的P. putida菌株對 Biolog GN plate碳水化合物類基質的代謝能力大部分與未施肥處理的P. putida分離株相近似,但對赤蘚糖醇(i-erythritol)以及左旋鼠李糖(L-rhamnose)利用能力顯著高於未施肥處理的P. putida菌株(P<0.05),未施肥處理中的P. putida菌株則對羧酸cis-aconitic acid, citric acid以及 formic acid之利用能力顯著高於豬糞堆肥處理的P. putida菌株(P<0.05),顯示同種菌株在長期施用堆肥後產生不同代謝特性。水稻杯栽試驗結果顯示,部分來自豬糞堆肥處理的分離株經16S rDNA RFLP分析,其基因型態與部分化學肥料處理的分離株相同但在代謝特性上不同,而未施肥處理的部分分離株與化學肥料處理的分離株代謝特性相似但基因型態卻不同;顯示長期施用化學肥料對水稻根圈螢光假單胞菌的代謝特性影響效應較近似未施肥處理,而長期施用豬糞堆肥則使水稻根圈螢光假單胞菌的代謝特性產生較大的偏移效應。另使用16S-23S rDNA RFLP法分析11 個篩自長期施用豬糞堆肥處理之玉米根圈螢光假單胞菌,在不同亞種(sub-species)的分離株間產生了不同圖譜,顯示16S-23S rDNA RFLP分析法對螢光假單胞菌有高度區辨力,適合用於根圈螢光假單胞菌的快速分析。
URI: http://hdl.handle.net/11455/28099
其他識別: U0005-2801200815410500
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.