Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28106
DC FieldValueLanguage
dc.contributor王明光zh_TW
dc.contributor林耀東zh_TW
dc.contributor官文惠zh_TW
dc.contributor鄒裕民zh_TW
dc.contributor.advisor王尚禮zh_TW
dc.contributor.author曹雅芳zh_TW
dc.contributor.authorTsao, Ya-Fangen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T07:29:19Z-
dc.date.available2014-06-06T07:29:19Z-
dc.identifierU0005-2808200715411000zh_TW
dc.identifier.citation工業技術研究院環境與安全衛生技術發展中心MSDS網頁,2000。 王一雄,1997,土壤環境汙染與農藥,明文書局,台灣,台北,p.103-106,141-142,293-298,366-371。 王仕賢、傅成美,1994,荷爾蒙對夏季小果番茄促進著果之探討,農業技術專刊園藝-3技術專刊。 王姿文、林瑩峰、荊樹人、李得元,2004,除草劑2,4-D在人工溼地中的處理效率研究,嘉南學報第三十期,p.85-91。 行政院環境保護署環境檢驗所,2002,臺灣河川水體、底泥及生物監測分析研究。 李國欽,2000,農藥之特性及安全有效之使用,行政院農業委員會農業藥物毒物試驗所技術專刊五十八號,p. 2,14-16。 李國欽、李貽華,1984,農藥污染地下水可能性之簡易測定法,植保會刊26:413-421。 陳威臣、闕甫伈、夏奇鈮、葉茂生、蔡新聲,2004,2,4-D對高氏柴胡葉片癒合組織誘導、增殖與柴胡皂含量之影響,作物、環境與生物資訊1:39-47。 楊盛行,1994,農業與環境保育,華香園出版社,台灣,台北,p.16。 農業統計年報,2005,行政院農業委員會。 農藥產銷統計,1993,臺灣區農藥工業同業公會。 儀器原理及功能,2002,元素分析儀,國立中興大學貴重儀器中心。 Abul Farah, M., B. Ateeq, M. Niamat Ali, R. Sabir, and W. Ahmad. 2004. Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms. Chemosphere 55:257-265. Aizawa, H. 1982. Metabolic maps of pesticides., p. 90-91,94,204,209. Academic press, New York. Aksu, Z., and E. Kabasakal. 2004. Batch adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep. Purif. Technol. 35:223-240. Aksu, Z., and E. Kabasakal. 2005. Adsorption characteristics of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution on powdered activated carbon. J. Environ. Sci. Health B. 40:545-570. Aramendia, M.A., V. Borau, C. Jimenez, J.M. Marinas, F.J. Romero, and J.R. Ruiz. 1997. Synthesis, characterization, and H-1 and Ga-71 MA NMR spectroscopy of a novel Mg/Ga double layered hydroxide. J. Solid. State Chem. 131:78-83. Ayranci, E., and N. Hoda. 2004. Studies on removal of metribuzin, bromacil, 2,4-D and atrazine from water by adsorption on high area carbon cloth. J. Hazard. Mater. B112:163-168. Bailey, G.W., and J.L. White. 1970. Factors influencing the adsorption, desorption and movement of pesticide in soil. Resid. Rev. 32:29-92. Baskaran, S., N.S. Bolan, A. Rahman, and R.W. Tillman. 1996. Effect of exogenous carbon on the sorption and movement of atrazine and 2,4-D by soils. Aust. J. Soil Res. 34:609 -622. Belmouden, M., A. Assabbane, and Y.A. Ichou. 2000. Adsorption characteristics of a phenoxy acetic acid herbicide on activated carbon. J. Environ. Monit. 2:257-260. Blanchard, P.E., and R.N. Lerch. 2000. Watershed vulnerability to losses of agricultural chemicals: interactions of chemistry, hydrology and land-use. Environ. Sci. Technol. 34:3315-3322. Boivin, A., R. Cherrier, and M. Schiavon. 2005a. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere. 61:668-676. Boivin, A., S. Amellal, M. Schiavon, and M.T.V. Genuchten. 2005b. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Environ. Pollut. 138:92-99. Borggaard, K.L., and J.C. Streibig. 1988. Chlorsulfuron adsorption by humic acid, iron oxides and montmorillonite. Weed Sci. 36:530-534. Calvet, R. 1989. Adsorption of organic chemicals. Environ. Health Perspect. 83:145-177. Cardoso, L.P., and J.B. Valim. 2004. Competition between three organic anions during regeneration process of calcined LDH. J. Phys. Chem. Solids 65:481-485. Cardoso, L.P., and J.B. Valim. 2006. Study of acids herbicides removal by calcined Mg—Al—CO3—LDH. J. Phys. Chem. Solids 67:987-993. Cardoso, L.P., R. Celis, J. Cornejo, and J.B. Valim. 2006. Layered double hydroxides as supports for the slow release of acid herbicides. J. Agric. Food Chem. 54:5968-5975. Cavani, F., F. Trifiro, and A. A. Vaccari. 1991. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11:173-301. Celis, R., M.C. Hermosı´n, L. Cox, and J. Cornejo. 1999. Sorption of 2,4-dichlorophenoxyacetic acid by model particles simulating naturally occurring soil colloids. Environ. Sci. Technol. 33:1200-1206. Clausen, L., and I. Fabricius. 2001. Atrazine, isoproturon, mecoprop, 2,4-D, and bentazone adsorption onto iron oxides. J. Environ. Qual. 30:858-869. Clausen, L., I. Fabricius, and L. Madsen. 2001. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina. J. Environ. Qual. 30:846-857. Cox, L., R. Celis, M.C. Hermosian, J. Cornejo, A. Zsolnay, and K. Zeller. 2000. Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter. Environ. Sci. Technol. 34:4600-4605. Crepaldi, E.L., J. Tronto, L.P. Cadoso, and J.B. Valim. 2002. Sorption of terephthalate anions by calcined and uncalcined hydrotalcite-like compounds. Colloids Surf. A: Physicochem. Eng. Asp. 211:103-114. Dubus, I.G., E. Barriuso, and R. Calvet. 2001. Sorption of weak organic acids in soils: clofencet, 2,4-D and salicylic acid. Chemosphere 45:767-774. Dutta, P.K., and M. Puri. 1989. Anion exchange in lithium aluminate hydroxides. J. Phys. Chem. 93:376-381. Fogg, A.M., J.S. Dunn, S.G. Shyu, D.R. Cary, and D. O''Hare. 1998. Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl H2O. Chem. Mater. 10:351-355. Gao, J.P., J. Maguhn, P. Spitzauer, and A. Kettrup. 1997. Distribution of pesticides in the sediment of the small Teufelsweiher pond. Water Res. 31:2811-2819. Goyne, K.W., J. Chorover, A.R. Zimmerman, S. Komarneni, and S.L. Brantley. 2004. Influence of mesoporosity on the sorption of 2,4-dichlorophenoxyacetic acid onto alumina and silica. J. Colloid Interface Sci. 272:10-20. Haberhauer, G., L. Pfeiffer, and M. H. Gerzabek. 2000. Influence of molecularstructure on sorption of phenoxyalkanoic herbicides on soil and its particle size fractions. J. Agric. Food Chem. 48:3722-3727. Hamaker, J.W., and J.M. Thompson. 1972. Adsorption., p. 49-143, in C. A. Goring and J. W. Hamakerm, eds. Organic chemicals in the soil environment. Marcel Dekker, New York. Hardell, L. 1981. Relation of soft-tissue sarcoma, malignant lymphoma and colon cancer to phenoxy acids, chlorophenols and other agents. Scand. J. Work Environ. Health 7:119-110. Hardell, L. 1982. Soft-tissue sarcoma, malignant lymphoma, and exposure to phenoxyacids or chlorophenols. Lancet:1408-1409. Hardell, L., and A. Sandstrom. 1979. Case-control study: soft-tissue sarcomas and exposure to phenoxyacetic acids or chlorophenols. Br. J. Cancer 39:711-717. Hardell, L., M. Eriksson, P. Lenner, and E. Lundgren. 1981. Malignant lymphoma and exposure to chemicals, especially organic solvents, chlorophenols and phenoxy acids: a case-control study. Br. J. Cancer 42:169-176. Hermosin, M.C., and J. Cornejo. 1993. Binding mechanism of 2,4-dichlorophenoxyacetic acid by organoclays. J. Environ. Qual. 22:325-331. Hermosin, M.C., I. Roldan, and J. Cornejo. 1991. Adsorption-desorption of maleic hydrazide on mineral soil components. J. Environ. Sci. Health B. 26:165-183. Ho, Y.S., and G. McKay. 1999. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 34:451-465. Ho, Y.S., and C.C. Chiang. 2001. Sorption Studies of Acid Dye by Mixed Sorbents. Adsorption 7:139-147. Huang, P.M., T.S.C. Wang, M.K. Wang, M.H. Wu, and N.W. Hsu. 1977. Retention of phenolic acids by nocrystalline hydroxy-aluminum and -iron compounds and clay minerals of soils. Soil Sci. 123:213-219. Hussein, M.Z.b., A.H. Yahaya, Z. Zainal, and L.H. Kian. 2005. Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate incapsulated in zinc-aluminium-layered double hydroxide. Sci. Technol. Adv. Mater. 6:956-962. Inacio, J., C. Taviot-Gue´ho, C. Forano, and J.P. Besse. 2001. Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl. Clay Sci. 18:255-264 Johnson, A.C., A.H. Haria, V.L. Cruxton, C.H. Batchelor, R.J. Williams, K. Heppell, and T. Burt. 1995. Isoproturon and anion transport by preferential flow through a drained clay soil. p. 105-110, In A. Walker, et al., eds. Pesticide movement to water. Proceedings of a symposium held at the University of Warwick, Coventry, UK. Johnson, R.M., and J.T. Sims. 1993. Influence of surface and subsoil properties on herbicide sorption by Atlantic coastal plain soils. Soil Sci. 155:339-348. Kooli, F., I.C. Chisem, M. Vucelic, and W. Jones. 1996. Synthesis and properties of terephthalate and benzoate intercalates of Mg-Al layered double hydroxides possessing verying layer charge. Chem. Mater. 8:1969-1977. Kooli, F., V. Rives, M.A. Ulibarri, and W. Jones. 1995. Pillaring of layered double hydroxides possessing variable layer charge with vanadium polyoxoanions. Mater. Res. Soc. Symp. Proc. 371:143-149. Laird, D.A., and B.L. Sawhney. 2002. Reactions of pesticides with soil minerals., p. 765-793 Soil Mineralogy with environmental applications. Soil Science Society of America. Madison, WI, USA. Lakraimi, M., A. Legrouri, A. Barroug, A.D. Royc, and J.P. Bessec. 2000. Preparation of a new stable hybrid material by chloride-2,4-dichlorophenoxyacetate ion exchange into the zinc-aluminium-chloride layered double hydroxide. J. Mater. Chem. 10:1007-1011. Legrouri, A., M. Lakraimi, A. Barroug, A.D. Roy, and J.P. Besse. 2005. Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides. Water Res. 39:3441-3448. Li, F., and X. Duan. 2006. Application of layered double hydroxides. Struct. bond. 119:193-223. Linquist, B.A., P.W. Singleton, and K.G. Cassman. 1997. Inorganic and organic phosphorus dynamics during a build-up and decline of available phosphorus in an ultisol. Soil Sci. 162:254-264. Low, M.J.D. 1960. Kinetics of chemisorption of gases on solids. Chem. Rev. 60:267-312. Meyn, M., K. Beneke, and G. Lagaly. 1990. Anion-exchange reactions of layered double hydroxides. Inorg. Chem. 29:5201-5207. Miller, J.J., N. Foroud, B.D. Hill, and C.W. Lindwall. 1995. Herbicides in surface runoff and groundwater under surface irrigation in southern Alberta. . Can. J. Soil Sci. 75:145-148. Miyata, S. 1975. The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties - I: The systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-. Clay Clay Miner. 23:369-375. Miyata, S. 1980. Physico-chemical properties of synthetic hydrotalcite in relation to composition. Clay Clay Miner. 28:50-56. Miyata, S. 1983. Anion-exchange propertites of hydrotalcite-like compounds. Clay Clay Miner. 31:305-311. Nelson, N.H., and S.D. Faust. 1969. Acidic dissociation constants of selected aquatic herbicides. Environ. Sci. Technol. 3:1186-1188. Nicholls, P.H., and A.A. Evans. 1991. Sorption of ionisable organic compounds by field soils. Part 1: Acids. Pestic. Sci. 33:319-330. Owusubennoah, E., C. Szilas, H.C.B. Hansen, and O.K. Borggaard. 1997. Commun. Soil Sci. Plant Anal. 28:685. Parker, L.M., N.B. Milestone, and R.H. Newman. 1995. The use of hydrotalcite as an anion absorent. Ind. Eng. Chem. Res. 34:1196-1202. Pavlovic, I., C. Barriga, M.C. Hermosin, J. Cornejo, and M.A. Ulibarri. 2005. Adsorption of acidic pesticides 2,4-D, Clopyralid and Picloram on calcined hydrotalcite. Appl. Clay Sci. 30:125- 133. Piccolo, A., and G. Celano. 1994. Hydrogen-bonding interactions between the herbicide glyphosate and water-soluble humic substances. Environ. Toxicol. Chem. 13:1737-1741. Piccolo, A., C. De Simone, and G. Celano. 1992. Interactions of atrazine with humic substances of different origins and their hydrolysed products. Sci. Total Environ. 117-118:403–412. Prado, A.G.S., and C. Airoldi. 2001. Adsorption and preconcentration of 2,4-dichlorophenoxyacetic acid on a chemically modified silica gel surface. Fresenius J. Anal. Chem. 371:1028-1030. Pusino, A., M.G. Fiori, I. Braschi, and C. Gessa. 2003. Adsorption and desorption of triasulfuron by soil. J. Agric. Food Chem. 51:5350-5354. Reichle, W.T. 1986. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics. 22:135-141. Rhee, S.W., M.J. Kang, H. Kim, and C.H. Moon. 1997. Removal of aquatic chromate ion involving rehydration reaction of calcined layered double hydroxide (Mg-Al-CO3). Environ. Technol. 18:231-236. Rives, V., and M.A. Ulibarri. 1999. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometales. Coord. Chem. Rev. 181:1-120. Ro, K.S., K.H. Chung, Y.C. Chung, and F.J. Tsai. 1997. Pesticides and herbicides. Water Environ. Res. 69:664-667. Sannino, F., A. Violante, and L. Gianfreda. 1997. Adsorption-desorption of 2,4-D by hydroxyl aluminium montmorillonite complexes. Pestic. Sci. 51:429-435. Sharpley, A.N., U. Singh, G. Uehara, and J. Kimble. 1989. Modeling Soil and Plant Phosphorus Dynamics in Calcareous and Highly Weathered Soils. Soil Sci. Soc. Am. J. 53:153-158. Shimizu, Y., S. Yamazaki, and T. Terashima. 1992. Sorption of anionic petachlorophenol in aquatic environments: the effect of pH. Water Sci. Technol. 11:41-48. Stanimirova, T.S., G. Kirov, and E. Dinolova. 2001. Mechanism of hydrotalcite regeneration. J. Mater. Sci. 453:455. Ukrainczyk, L., and H.A. Ajwa. 1996. Primisulfuron sorption on minerals and soils. Soil Sci. Soc. Am. J. 60:460-467. Vasudevan, D., and E.M. Cooper. 2004. 2,4-D sorption in iron oxide-rich soils: role of soil phosphate and exchangeable Al. Environ. Sci. Technol. 38:163-170. Vasudevan, D., E.M. Cooper, and O.L. Van exem. 2002. Sorption-Desorption of Ionogenic Compounds at the Mineral-Water Interface: Study of Metal Oxide-Rich Soils and Pure-Phase Minerals. Environ. Sci. Technol. 36:501-511. Wang, S.L., and P.C. Wang. 2007. In situ XRD and ATR-FTIR study on the molecular orientation of interlayer nitrate in Mg/Al-layered double hydroxides in water. Colloid Surf. A 292:131-138. Watson, J.R., A.M. Posner, and J.P. Quirk. 1973. Adsorption of the herbicide 2,4-D on goethite. J. Soil Sci. 24:503-511. Wu, F.C., R.L. Tseng, and R.S. Juang. 2001. Adsorption of dyes and phenols from water on the activated carbons prepared from corn-cob wastes. Environ. Technol. 22:205-213. You, Y., G.F. Vance, and H. Zhao. 2001. Selenium adsorption on Mg–Al and Zn–Al layered double hydroxides. Appl. Clay Sci. 20:13-25. Zigan, F and Rothbauer, R. 1967. Neutromembeugungstmessungen. am Brucit. Neues Jahrb. Miner. Monatsh. 137–143.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/28106-
dc.description.abstractChlorinated phenoxyacetic acid herbicides, such as 2,4-dichlorophenoxyacetic acid(2,4-D), are widely used for controling weeds. Due to its low pKa value of 2.73, 2,4-D exists as an anionic species in the environment and has high mobility in soils and can easily migrate to non-target area by leaching. Layered double hydroxides (LDHs) have high specific surface area and anionic exchange capacity (AEC), so they have high potential in immobilizing inorganic and organic anion contaminants in water. However the adsorption is not specific to 2,4-D, and the existences of other anions may lower the adsorption efficiency of LDHs for 2,4-D. A better understanding of the adsorption mechanisms of LDHs will be essential for selective removal of 2,4-D by LDHs from water. In this study, the effects of the positive charge density and nitrate orientation of LDHs on the adsorption of 2,4-D were investigated. Mg/Al-NO3 LDH with Al3+/(Mg2++Al3+) molar ratios of 1/3 (LDH3), 1/4 (LDH4), 1/5(LDH5) were synthesized and used as the adsorbents. The kinetic study showed that the adsorption could reach equilibrium in 10 minutes. Among the samples, LDH3 has the highest layer charge density and contains nitrate with an orientation perpendicular to the hydroxide sheets, so the maximum adsorption of 2,4-D on LDH3 was as high as 89% of its anionic exchange capacity. The 2,4-D adsorption of LDH3 occurred mainly through ion exchange for interlayer nitrate. On the contrary, LDH5 with a low 2,4-D adsorption capacity due to the low accessibility of 2,4-D to the interlayer space. The accessibility was restricted by the small basal spacing of LDH5 as a result of the parallel orientation of the interlayer nitrate with respect to the hydroxide sheet. Thus, the 2,4-D adsorption occurred mainly on the external surface of the material, and the maximum adsorption of 2,4-D on LDH5 was 16 % of its anionic exchange capacity. For LDH4 that contains interlayer nitrate with both parallel and perpendicular orientations, the adsorption characteristics was between those of LDH3 and LDH5, and the maximum amount of 2,4-D adsorbed on LDH4 was 66% of the anionic exchange capacity. The results of competitive adsorption revealed that the adsorptions of 2,4-D on LDH3 and LDH4 are less affected by the coexistences of other anions, such as Cl-、Br 、NO3-、HCO3-、SO42-, in solution. The kinetic adsorption curves of LDH3 and LDH4 in different temperatures had a good fit with pseudo-second order kinetic model. The rate of the adsorption of 2,4-D on LDHs increasing with temperature, and LDH3 required more activation energy to adsorb 2,4-D then LDH4. The results of this study suggested that LDH3 is a better adsorbent for removing 2,4-D from water.zh_TW
dc.description.abstract苯氧基酸系的除草劑2,4-dichlorophenoxyacetic acid(2,4-D)是一種廣為使用的除草劑,其pKa值為2.73,所以在環境中會解離成陰離子型態,因此容易被淋洗或流失到非目標區域並威脅水體。奈米層狀雙氫氧化物(layered double hydroxides, LDHs)具有高比表面積與高陰離子交換容量,而具有移除環境中2,4-D的潛能。但存在於環境中的其他陰離子可能對2,4-D的吸附進行競爭作用,因此必須瞭解影響LDHs 陰離子交換反應的機制以利其自水中移除2,4-D的效率。本研究的目的為利用Mg/Al-NO3 LDH吸附陰離子型除草劑2,4-D,並探討LDHs結構中層間正電荷密度、夾層陰離子的排列方式及溶液中的離子強度對其吸附行為的影響。所使用的Mg/Al-NO3 LDH,其Al3+/(Mg2++Al3+)比例分別為1/3 (LDH3)、1/4 (LDH4)、1/5(LDH5)。由動力吸附實驗中顯示LDHs對2,4-D的吸附速率很快,大約於10分鐘即可達反應平衡,透過等溫吸附實驗並配合XRD及FT-IR的分析結果發現,LDHs對2,4-D的吸附量主要受層間正電荷密度及硝酸根離子排列方式的影響,LDH3具有較大的層間電荷正密度且層間硝酸根離子以垂直的方式排列,致使對2,4-D的最大吸附量可達其陰離子交換容量的89 %,且吸附機制主要為陰離子交換。LDH5的層間電荷正密度較小且層間硝酸根離子以平行的方式排列,所以對2,4-D的最大吸附量遠低於其陰離子交換容量僅達16 %,主要為表面吸附。LDH4的層間電荷正密度介於中間,且層間硝酸根離子同時以垂直和平行的方式排列,對2,4-D的最大吸附量達其陰離子交換容量的66 %,且吸附機制主要為陰離子交換。因此,吸附機制主要為陰離子交換的LDH3及LDH4較不易受溶液中其他陰離子(Cl-、Br-、NO3-、HCO3-、SO42-)的影響。LDH3和LDH4,在不同溫度下的動力吸附曲線較適合以Pseudo-second order kinetic model模擬,溫度越高LDHs對2,4-D的吸附速率越快,且以LDH3對2,4-D的吸附所需之活化能較大。綜合以上結果,在三種不同電荷密度的LDHs中以LDH3較適合作為移除水中2,4-D之吸附劑。zh_TW
dc.description.tableofcontents目錄 摘要 I Abstract III 目錄 V 表次 VIII 圖次 IX 壹、 前言 1 貳、 文獻回顧 4 2.1 農藥使用現況 4 2.2 除草劑在土壤中的傳輸 4 2.3 苯氧基酸系的除草劑2,4-D 7 2.3.1 2,4-D的毒理性質 7 2.3.2 2,4-D在環境中的宿命 8 2.3.3 2,4-D之吸附 9 2.4 層狀雙氫氧化合物(layered double hydroxides, LDHs) 10 參、 材料與方法 15 3.1 製備Mg/Al-NO3 LDH 15 3.2 Mg/Al-NO3 LDH之鑑定與基本特性分析 15 3.2.1 化學組成分析 15 3.2.2 XRD結構鑑定 16 3.2.3 傅立葉轉換紅外光譜分析 16 3.3 層狀雙氫氧化物對2,4-D的吸附實驗 17 3.3.1吸附動力學 17 3.3.1.1 溫度的影響 17 3.3.2 等溫吸附 18 3.3.2.1 LDHs層間電荷密度的影響 18 3.3.2.2 離子強度的影響 20 3.4 競爭吸附 20 肆、 結果與討論 22 4.1 層狀雙氫氧化物的基本性質之探討 22 4.1.1 化學組成分析 22 4.1.2 X光繞射分析 22 4.1.3 傅利葉轉換紅外光譜分析 24 4.2 層狀雙氫氧化物對2,4-D之動力吸附 27 4.3 層狀雙氫氧化物對2,4-D的等溫吸附 27 4.3.1 電荷密度的影響 27 4.3.2 離子強度的影響 42 4.4 競爭離子的影響 46 4.5 溫度對LDH吸附2,4-D之影響 52 4.5.1 動力學模式 56 4.5.2 反應活化能(Activation energy)之探討 67 伍、 結論 70 參考文獻 71 表次 表 1. Mg/Al- NO3 LDH的基本性質 23 表 2. 層狀雙氫氧化物的X光繞射分析數據 25 表 3. 以Langmuir及Freundich 等溫吸附模式模擬不同層狀雙氫氧化物對2,4-D等溫吸附之結果 32 表 4. 以不同的動力學模式模擬LDH3在不同溫度對2,4-D動力吸附之結果 64 表 5. 以不同的動力學模式模擬LDH4在不同溫度對2,4-D動力吸附之結果 65 表 6. 以不同的動力學模式模擬LDH5在不同溫度對2,4-D動力吸附之結果 66 圖次 圖 1. 層狀雙氫氧化物的結構圖 12 圖 2. 不同層狀雙氫氧化物的XRD圖譜(a)LDH3 (b)LDH4 (c)LDH5 25 圖 3. 不同層狀雙氫氧化物的FT-IR圖譜(a)LDH3 (b)LDH4 (c)LDH5 26 圖 4. 不同層狀雙氫氧化物對2,4-D的動力吸附曲線(Temp=25℃, pH=9, Ci=100 mg L-1) 28 圖 5. 不同電荷密度的層狀雙氫氧化物對2,4-D的等溫吸附曲線(Temp=25℃, pH=9, I=0.001M KNO3) 29 圖 6. 層狀雙氫氧化物對2,4-D的等溫吸附曲線以Langmuir方程式直線回歸的結果 31 圖 7. 層狀雙氫氧化物對2,4-D的等溫吸附曲線以Freundich方程式直線回歸的結果 31 圖 8. LDH3在0.001M離子強度下吸附2,4-D後的XRD圖譜(a)2,4-D-0 mg L-1 (b) 2,4-D-200 mg L-1 (c) 2,4-D-400 mg L-1 34 圖 9. LDH3在0.001M離子強度下吸附2,4-D後的FT-IR圖譜(a)2,4-D-0 mg L-1 (b) 2,4-D-200 mg L-1 (c) 2,4-D-400 mg L-1 (d) 2,4-D 35 圖 10. LDH4在0.001M離子強度下吸附2,4-D後的XRD圖譜(a)2,4-D-0 mg L-1 (b) 2,4-D-200 mg L-1 (c) 2,4-D-400 mg L-1 37 圖 11. LDH4在0.001M離子強度下吸附2,4-D後的FT-IR圖譜(a)2,4-D-0 mg L-1 (b) 2,4-D-200 mg L-1 (c) 2,4-D-400 mg L-1 (d) 2,4-D 38 圖 12. LDH5在0.001M離子強度下吸附2,4-D後的XRD圖譜(a)2,4-D-0 mg L-1 (b) 2,4-D-200 mg L-1 (c) 2,4-D-400 mg L-1 40 圖 13. LDH5在0.001M離子強度下吸附2,4-D後的FT-IR圖譜(a)2,4-D-0 mg L-1 (b) 2,4-D-200 mg L-1 (c) 2,4-D-400 mg L-1 (d) 2,4-D 41 圖 14. 不同離子強度對LDH3吸附2,4-D的影響(Temp=25℃, pH=9) 43 圖 15. 不同離子強度對LDH4吸附2,4-D的影響(Temp=25℃, pH=9) 44 圖 16. 不同離子強度對LDH5吸附2,4-D的影響(Temp=25℃, pH=9) 45 圖 17. 在0.01 M的離子強度下,不同LDH對2,4-D的等溫吸附曲線(Temp=25℃, pH=9) 47 圖 18. 在0. 1 M的離子強度下,不同LDH對2,4-D的等溫吸附曲線(Temp=25℃, pH=9) 47 圖 19. 不同陰離子對LDH3吸附2,4-D的影響(Temp=25℃, pH=6) 48 圖 20. 不同陰離子對LDH4吸附2,4-D的影響(Temp=25℃, pH=6) 50 圖 21. 不同陰離子對LDH5吸附2,4-D的影響(Temp=25℃, pH=6) 51 圖 22. 不同溫度下,LDH3對2,4-D的動力吸附曲線(pH=9,Ci=100mg L-1) 53 圖 23. 不同溫度下,LDH4對2,4-D的動力吸附曲線(pH=9, Ci=100mg L-1) 55 圖 24. 不同溫度下,LDH5對2,4-D的動力吸附曲線(pH=9, Ci=100mg L-1) 57 圖 25. Pseudo-first order動力方程式模擬LDHs對2,4-D動力吸附的結果(a)LDH3(b)LDH4(c)LDH5 59 圖 26. Pseudo-second order動力方程式模擬LDHs對2,4-D動力吸附的結果(a)LDH3(b)LDH4(c)LDH5 60 圖 27. Elovich速率方程式模擬LDHs對2,4-D動力吸附的結果(a)LDH3(b)LDH4(c)LDH5 61 圖 28. Intraparticle擴散方程式模擬LDHs對2,4-D動力吸附的結果(a)LDH3(b)LDH4(c)LDH5 63 圖 29. 藉由Arrhenius方程式求得2,4-D插入LDHs層間的反應活化能 68zh_TW
dc.language.isoen_USzh_TW
dc.publisher土壤環境科學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200715411000en_US
dc.subjectlayered double hydroxidesen_US
dc.subject層狀雙氫氧化物zh_TW
dc.subject2,4-Den_US
dc.subjectadsorptionen_US
dc.subjection exchangeen_US
dc.subject2,4-Dzh_TW
dc.subject吸附作用zh_TW
dc.subject離子交換zh_TW
dc.title層狀雙氫氧化物的電荷密度及層間硝酸根離子的排列方式對其吸附除草劑2,4-D的影響zh_TW
dc.titleEffects of layer charge density and nitrate orientation of layered double hydroxides on the sorption of 2,4-Den_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:土壤環境科學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.