Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28112
標題: 建立金屬離子在水溶液中與礦物表面上化學反應性之線性自由能關係
Establishing Linear Free Energy Relationships for the Chemical Reactivity of Metal Ions in Aqueous Solution and on Mineral Surface
作者: 林泰宏
Lin, Tai-Hong
關鍵字: 水合金屬離子;hydration;水合;水解;沉澱;擴散;氧化還原;吸附;離子交換;觀念式密度泛函理論;軟硬酸鹼;電荷控制;軌域控制;線性自由能關係;hydrolysis;precipitation;diffusion;redox;adsorption;ionic exchange;conceptual density functional theory;hard and soft acids and bases;charge controlled;orbital controlled;linear free energy relationship (LFER)
出版社: 土壤環境科學系所
引用: [1] 張家銘。1997。 北臺灣與澎湖島紅壤中鐵凎氧磁性氧化鐵之鑑定以及尖晶石型式鐵與鋁氧化物表面去質子化反應的量子化學研究,國立臺灣大學農業化學研究所博士學位論文。 [2] Atkins, P. W. 1990. Physical chemistry. 4th Ed, Oxford Melbourne, Tokyo: 272. [3] Auboiroux, M., F. Melou, F. Bergaya, and J. C. Touray. 1998. Hard and soft acid-base model applied to bivalent cation selectivity on a 2:1 clay mineral Clays and Clay Minerals. 46: 546-555. [4] Becke, A. D. 1993. Density functional thermochemistry. III. The role of exact exchange-correlation functions [J]. J. Chem. Phys. 98: 5648-5652. [5] Bethea, R. M., B. S. Duran, and T. L. Boullion. 1995. Statistical Methods for Engineers and Scientists. 3rd Edition, New York: Marcel Dekker. [6] Chang, C. M. 2003a. A unified model for predicting the mononuclear first-to fifth-order and the polynuclear hydrolysis constants of metal cations. J. Mol. Struct (Theochem). 664-665:21-26. [7] Chang, C. M. 2003b. Frontier-molecular-orbital correlations for the acidity constants in aqueous metal ions. J. Mol. Struct (Theochem). 622:249-255. [8] Chang, C. M. 2003c. Linear atomization energy relationships for seven aqueous reactions of metal cations. J. Mol. Struct (Theochem). 6623:127-134. [9] Chang, C. M. 2003d. Novel descriptors based on density functional theory for predicting divalent metal ions adsorbed onto silica-disiloxane cluster model study. J. Mol. Struct (Theochem). 664-665:27-35. [10] Chang, C. M. 2003e. Unified linear predicting models for the essential reactions of metal ions in aquatic and surface systems. J. Phys. Chem. B 107:5190-5193. [11] Chen, W. K., M. J. Cao, S. H. Liu, and J. Q. Li. 2005. On the coverage-dependent orientation of benzene adsorbed on Cu(100): A density functional theory study. Chem. Phys. Lett. 407(4-6):414-418. [12] Chen, W. K., S. H. Liu, and M. J. Cao et al. 2006. Adsorption and dissociation of methanol on Au(111) surface: A first-principles periodic density functional study. J. Mol. Struct. (Theochem). 770(1-3):87-91. [13] Curtiss, L. A., K. Redferm, K. Raghavachari, and J. A. Pople. 1998. Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities. J. Chem. Phys. 109:42-55. [14] David, C. Y. 2001. Computational Chemistry: A practical guide for applying techniques to real-world problems. John Wiley & Sons, Inc. 99-100. [15] De, M., M. J. E. Cardoso, and J. P. O''Connell. 1987. Activity coefficients in mixed-solutions. Fluid Phase Equilibria. 33(1):315. [16]Dreizler, R. M., and E. K. U. Gross. 1990. Density functional theory. Berlin: Springer-Verlag. [17] Frisch, M. J., G. W. Trucks, and H. B. Schlegel et al. 2003. Gaussian 03 [M]. Pittsburgh: Gaussian Inc. [18]Fukui, K. 1975. Theory of orientation and stereoselection. Berlin : Springer-Verlag. [19]Gapon, Y. N. 1933. On the theory of exchange adsorption in soils. J. Gen. Chem. USSR 3: 144-160. [20] Gázquez, J. L. 1997a. Activation energies and softness additivity. J. Phys. Chem. A. 101: 8967-8969. [21] Gázquez, J. L. 1997b. Bond energies and hardness differences. J. Phys. Chem. A. 101: 9464-9469. [22] Gázquez, J. L, A. Martinez, and F. J. Mendez. 1993. Relationship between energy and hardness differences. Phys. Chem. 97: 4059-4063. [23] Hay, P. J., and W. R. Wadt. 1985. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals [J]. J. Chem. Phys. 82:299-310. [24]Hehre, W. J., L. Radom, P. V. R. Schleyer, and J. A. Pople. 1986. Ab Initio Molecular Orbital Theory. John Wiley & Sons. [25] Hohenberg, P., and W. Kohn et al. 1964. Inhomogeneous electron gas. Phy. Rev. 136:B864-B871. [26]Huzinaga, S. 1984. Gaussian Basis Sets for Molecular Calculations. Elsevier, New York. [27] Inczedy, J. 1976. Analytical applications of complex equilibria (Ellis Horwood series in analytical chemistry). Halsted Press. [28] James, R. R., A. D. David, M. R. Kevin, and R. F. Andrew. 1999. Trivalent ion hydrolysis reactions: A linear free-energy relationship based on density functional electronic structure calaulations J. Am. Chem. Soc. 121:3234-3235. [29]Kerr, H. W. 1928. The nature of base exchange and soil acidity. Journal of American Society Agronomy. 20:309-335. [30] Klopman, G. 1968. Chemical reactivity and the concept of charge-and frontier-controlled reactions J. Am. Chem. Soc. 90:223-234. [31] Kohn, W. 1999. Electronic structure of matter-wave functions and density functional. Rev. Mod. Phys. 71:1253-1266. [32] Koopmans, T. 1934. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica (in German) (Amsterdam). 1(1):104-113. [33] Krestov, G. A. 1991. Thermodynamics of Solvation: Solution and Dissolution, Ions and Solvents, Structure and Energetics (Ellis Horwood Series in Phys). Prentice Hall. [34] Li, Y. H. 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. et cosmochim. Acta. 38:703-714. [35] Lide, D. R. 2005-2006. CRC Handbook of Chemistry and Physics, 86th Edition, Cleveland Ohio: CRC Press. [36] Méndez, F., J. Tamaiz, and P. Geerlings. 1998. 1,3-dipolar cycloaddition reactions: A DFT and HSAB principle theoretical model. J. Phys Chem. A. 102:6292-6296. [37] Nernst, W. 1889. Über gegenseitige beeinflussung der Löslichkeit von Salzen. Zeitschrift für physikalische Chemie. 4: 372-383. [38] Parr, R. G., and R. G. Pearson. 1983. Density functional theory for fractional particle number: Derivative discontinuities of the energy. J. Am. Chem. Soc. 105:7512-7516. [39] Parr, R. G., and W. Yang. 1984. Density functional approach to the frontier-electron theory of chemical reactivity. [J]. J. Am. Chem. Soc. 106:4049-4050. [40] Parr, R. G., and W. Yang. 1989. Density-Functional Theory of Atoms and Molecules [M]. New York : Oxford University Press:87-104. [41] Parr, R. G., R. A. Donnelly, M. Levy, and W. E. Palke. 1978. Electronegativity- the density functional viewpoint. J. Chem. Phys. 68: 3801-3807. [42] Pearson, R. G. 1963. Hard and Soft Acids and Bases. J. Amer. Chem. Soc. 85:3533-3539. [43] Pearson, R. G. 1985. Absolute electronegativity and absolute hardness of Lewis acids and bases. J. Am. Chem. Soc. 107:6801-6806. [44] Pearson, R. G. 2005. Chemical hardness and density functional theory J. Chem. Sci. 117:369-377. [45] Sanderson, R. T. 1952. Electronegativities in inorganic Chemistry. Educ. (29)539-544. [46] Schott, H. 1977. Relationship between zero point of charge and solubility product for hydroxides of polyvalent cations. J. Phar. Sci. 66:1548-1550. [47] Snoeyink, V. L., and D. Jenkins. 1980. Water Chemistry. Wiley & Sons: New York. [48] Sposito, G., and S. V. Mattigod. 1979. Ideal behavior in Na+-trace metal cation exchange on camp berteau montmorillonite Clays and Clay Minerals. 27: 125-128. [49] Sun, B. Z., W. K. Chen, and X. L. Xu. 2006. Theoretical studies of the adsorption and dissociation of two NO Molecules on Cu2O(111) Surface. Acta Phys-Chim. 22(9):1126-1131. [50] Sverjensky, D. A. 1992. Linear free energy relations for predicting dissolution rates of solids. Nature. 358:310-313. [51] Sverjensky, D. A., and P. A. Molling. 1992. A linear free energy relationship for crystalline solids and aqueous ions. Nature. 356:231-234. [52] Sverjensky, D. A. 1993. Physical surface-complexation models for sorption at the mineral-water interface Nature 364. 776-780. [53] Sykes, P. A. 1993. Guidebook to Mechanism In Organic Chemistry; (6th ed.), John Wiley & Sons, Inc. New York. 1-358. [54] Uehara, G., and G. P. Gillman. 1981. The Mineralogy, Chemistry and physics of tropical soils with variable charge clays. Westview Press, Inc. Boulder. 31-66; 137-148. [55] Undsemaa, M., and T. Tamm. 2003. Density-functional theory calculations of aqueous redox potentials of fourth-period transition metals. J. Phys. Chem. A. 107:9997-10003. [56]Vanselow, A. P. 1932. Equlibria of the base-exchange of bentonites, permutites, soil colloids, and zeolites. Soil Science. 33:95-113. [57] Wells, P.R. 1968. Linear free energy relationships. Academic, London. 116. [58]Woodward, R. B., and R. Hoffmann. 1970. The conservation of orbital symmetry. New York: Academic Press. [59] Xu, S., and J. B. Harsh. 1990a. Hard and soft acid-base model verified for monovalent cation selectivity Soil Sci. Soc. Am. J. 54:1596-1601. [60] Xu, S., and J. B. Harsh. 1990b. Monovalent cation selectivity quantitatively method according to hard/soft acid/base theory Soil Sci. Soc. Am. J. 54:357-363. [61] Yang, W., and R. G. Parr. 1985. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. USA, 82:6723-6726. [62] Yang, W., and W. J. Mortier. 1986. The use of global and local molecular parameters for the analysis of the gas-phase of amines. [J]. J. Am. Chem. Soc. 108:5708-5711. [63] Zhang, L., X. Lu, Y. Wang, and J. Shi. 1993. Determination of activity coefficients using a flow EMF method1: HCl in water-methanol mixtures at 25, 35 and 45℃. J Solution Chem. 22(2):137.
摘要: 
金屬陽離子的基本反應如水合、水解、沉澱、擴散與氧化還原是在水溶液裡的重要反應,而吸附與離子交換則是發生在土壤礦物表面的反應。化學反應可視為分子與分子間的作用,然而亦需考慮到有效碰撞與發生反應的主要位置,因此在討論化學反應需結合整體與局域的觀點(combined global and local approach)才最為適當。本論文是以觀念式密度泛函理論來進行水合金屬離子模型的計算。並將化學反應的關係,區分為整體性(Global)與局域性(Local)兩大部分,而皆再予以細分為電荷控制與軌域控制兩個部分,由此可得到預測參數群。整體性的電荷控制是以原子電荷(Z),也就是價數,而軌域控制是以化學硬度(η)及整體交互作用(ΔEint)。局域性的電荷控制是以電荷量(ρ+、ρ-),而軌域控制為馬利肯電子密度分析來求得福井函數(f+、f-),並由福井函數進一步可得到局域軟度(s+、s-)。將上述的參數再與水合、水解、擴散、沉澱、氧化還原、吸附、陽離子交換等反應之文獻實驗值,進行複因子迴歸分析,最後以密度泛函理論為基礎的線性自由能關係(DFT-based LFER)來檢視預測結果。
水合金屬離子於水溶液裡的反應主要是受到整體性參數的影響,也就是金屬離子價數與金屬離子軟硬酸鹼之本質,氧化還原的發生主要亦是決定於金屬離子本身之化學硬度。而發生在土壤礦物表面的有吸附與陽離子交換等反應,吸附反應皆以局域性參數決定,與整體性參數無關,須從水合離子局域性的庫侖靜電交互作用與局域性的軟度來考慮,且以庫侖靜電交互作用更為重要。而陽離子交換係數的預測結果亦良好, DZ與MB預測所呈現出的差異,主要是因基組的不同所造成,但仍可看出陽離子交換係數是受到金屬離子本身硬度及金屬離子與吸附劑間庫侖靜電交互作用力的影響。本研究預測結果極為良好,且具有理論化學基礎根據加以支持,於化學反應裡結合整體性與局域性的概念,成功地解釋了金屬離子於水溶液或礦物表面的基本反應。

Basic reactions of metal ions such as the hydration, hydrolysis, precipitation, diffusion, and redox are important in the aqueous solution. Furthermore, the adsorption, ionic exchange reactions occur on the soil mineral surface system. Regarding chemical reactions as the effect between molecule and molecular, however also have to consider effectively colliding and the main reaction position. Therefore need to combine the global with local approach in discussing chemical reactions are most suitable. This thesis was achieved by the conceptual density functional theory to calculate the hydrated metal ion model. Differentiating the chemical reaction relations for the global and local two major parts, and both are again subdivided into charge controlled and orbital controlled two parts, from this could obtain the forecast parameters. The global charge controlled is by the atomic charge (Z), namely the valence number, and the orbital controlled is by chemical hardness and global interaction (ΔEint). The local charge controlled is potential (ρ+、ρ-), and orbital controlled is by the Mulliken population analysis to obtain Fukui function(f+、f-), and further could obtain local soft(s+、s-) by the Fukui function (s+, s-). Above parameters will carry on the multi-regression analysis with literature experiment values of the hydration, hydrolysis, diffusion, precipitation, redox, adsorption, cation exchange reactions, and finally inspect the forecast results by DFT-based linear free-energy relationship (DFT-based LFER).

Reactions of the hydrated metal ions in the aqueous solution are mainly effected by the global parameters, in other words the metal valence and metal itself hard and soft acids and bases'' properties. The redox is mainly decided to the metal itself chemical hardness. Besides the adsorption, cation exchange reactions occur on the soil mineral surface system. Adsorption is decided by all the local parameters, has nothing to do with the global parameters, need to consider from the coulomb interaction correlation and local soft of hydrated metal ions, especially more important by the coulomb static electricity interaction. The cation exchange coefficient forecast result is also good, and the difference of DZ and MB mainly is due to the different basis sets. However it still was worthy of observing at the cation exchange coefficient effected by the hydrated metal ion itself chemical hardness and the coulomb static electricity interaction action influence between the metal ions and adsorbent. Whole forecast results are extremely good, and supported by the theoretical chemistry foundation basis, unifying the global and local concept in the chemical reactions successfully explain the basic reactions of metal ions in the aqueous solution or on the mineral surface system.
URI: http://hdl.handle.net/11455/28112
其他識別: U0005-3001200807220500
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.