Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28114
DC FieldValueLanguage
dc.contributor楊秋忠zh_TW
dc.contributor譚鎮中zh_TW
dc.contributor簡宣裕zh_TW
dc.contributor林素禎zh_TW
dc.contributor.advisor蘇孝華zh_TW
dc.contributor.author黃萱如zh_TW
dc.contributor.authorHuang, Hsuan-Ruen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T07:29:21Z-
dc.date.available2014-06-06T07:29:21Z-
dc.identifierU0005-0105200801073500zh_TW
dc.identifier.citation江晃榮。1993。農業生物技術。華香園出版社印行。333-338。 行政院農業委員會農糧署。 2004。 農業統計年報。206。 沈添富、陳婉琳。2001。有機磷之消化與植酸酶之應用。九十年度飼料製造技術研習會專輯。137-148。台灣農業年報。2002。台灣省政府農林廳。 洪美華。2002。台灣本土豆科根瘤菌分離特性研究。國立中興大學土壤環境科學系碩士論文。 張鳳屏。1991。 茶園土壤中囊叢枝菌根菌與溶磷細菌之調查及應用,國立中興大學土壤環境科學系碩士論文。 張鳳屏、楊秋忠。1999。磷肥及溶磷菌對茶樹磷素吸收與茶品質之 研究。土壤與環境。2:35-44。 彭德昌。 2000。 微生物接種對無子西瓜生育與鮮重之影響。 花蓮區農業改良場研究彙報。 18:61-66。 曾文聖。2001。台灣本土性快生型大豆根瘤菌之分子演化。國立 台灣大學農業化學研究所博士論文。 Alagawadi, A.R., and A.C. Guar. 1988. Associative effect of Rhizobium and Phosphate-solubilizating bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241-246. Alexander, M. 1977. Introduction to Soil Microbiology. 333-339. John Wily & Sons. New York. Anderson, G. 1980. Assessing organic phosphorus in soil. In:Khasawneh F. E., E. C. Sample, E. J. Kamprth, editors. The Role of Phosphorus in Agriculture. Wis. Madison, Amer. Soc. Agronomy. 411-432. Azcon-G. De Aguilar, C., and J.M. Barea. 1978. Effects of interactions between different culture fractions of phosphobactera and Rhizobium on mycorrhizal infection, growth, and nodulation of Medicago sativa. Can. J. Microbiol. 24:520-524. Bae, H.D., L.J. Yanke, K.-J. Cheng, and L.B. Selinger. 1999. A novel staining method for detecting pytase activity. J. of Microbiological Methods 39:17-22. Bajpai, P.D., and W.V.B. Sundara Rao. 1971. Phosphate solubilizing bacteria. Part Ι. Solubilization of phosphate in liquid culture by selected bacteria as affected by different pH values. Soil Sci. Plant Nutr. 17:41-43. Banik, S., and B. K. Dey. 1982. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate - solubilizing microorganisms. Plant Soil 69: 353-364. Barber, S. A. 1984. Soil nutrient bioavailability. John Wiley & Sons, New York. Bae H. D., L. J. Yanke, K. J. Cheng, L. B. Selinger. 1999. A novel staining method for detecting phytase activity. J. of Microbiol. Methods 39: 17-22. Baya, A. M., R. S. Boethling, and A. Ramos-Cormenzana. 1981. Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biol. Biochem. 13: 527-531. Brockwell, J. 1980. Experiments with crop and pasture legumes-priciples and practice. 417-488. In F. J. Bergerson(ed.)Methods for uating Evaluating Biological Nitrogen Fixation. John Wiley & Sons, New York. Brosius, J., M.L. Palmer, P.J. Kennedy, and H.R. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 75: 4801-4805. Dalal, R. C. 1977. Soil organic phosphorus. Adv. Agron. 29:83-117. Dalal, R.C. 1982. Effect of plant growth and addition of plant residues on the phosphatase activity in soil. Plant Soil 66:265-269. Datta, H., S. Banik, and R. K. Gypta. 1982. Studies of the efficient of phytohormone producing slubilizing Bacillus firmus in augmenting paddy rice yield in acid soils of Nageland. Plant Soil 69: 365-373. Dissing, N. L., Eiland. 1980. Investigation of the relationship between P-fertility, phosphatase activity and ATP content in soil. Plant Soil 57: 95-103. Gerretsen, F.C. 1948. The influence of microorganism on the phosphate intake by the plant. Plant Soil 1:51-81. Halder, A. K., A. K. Misbra, P. Bhattacharyya, and P. K. Chakrabartty. 1990. Solubiliztion of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. Appli. Microbiol. 14: 89-95. Harley, J.L. and S.E. Smith, 1983. Mycorrhizal symbiosis. Academic Press.London,. Illmer,P., and F. Schinner. 1995. Solubilization of inorganic calcium phosphate-solubilization mechanisms. Soil Biol. Biochem. 27:257-263. Islam, A. and B. Ahmed, 1973. Distribution of inositol phosphate, phospholipids and nucleic acids and mineralization of phosphates in some Bangladesh. J. Soil Sci. 24: 193-198. Jones, D.A., B. F. L. Smith, , M. J. Wilson, and B. A. Goodman, 1991. Solubilizator fungi of phosphate in rise soil. Mycol Res. 95:1090-1093. Kafkafi, U. 1991. Plant root symbiosis. In waisel, Y., A. Eshel and U. Kafkafi. eds. Plant root: the hidden half. 671-702. Marel Dekker, Inc. New York, USA. Kerovuo, J., M. Lauraeus, P. Nurminen, N. Kalkkinen, and J. Apajalahti, 1998. Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64:2079-2085. Khalafallah, M. A., M. S. M. Sabec, and H. K. Abd-El-Maksoud, 1982. Influence of phosphate dissolving bacteria on the efficiency of superphosphate in a calcareous soil cultivated with Vicea faba. Z. Pflanzenernachr. Bodenkd. 145:455-459. Kucey, R. M. N. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can. J. Soil. Sci. 63: 671-678. Kundu, B. S. and A. C. Gaur. 1984. Rice response to inoculation with N2-fixing and P-solubilizing microorganisms. Plant and Soil 79: 227-234. McLean, E. O. 1982. Soil pH and Lime requirement. In A, Klute et al .(ed) Method of Soil Analysis. PartⅠ. 2nd edition. ASA, Madison, WI. USA. 199-224. Molla, M.A.Z., A.A. Chowdhury, A. Islam, and S. Hoque, 1984. Microbial mineralization of organic phosphate in soil. Plant and Soil. 78:393-399. Olsen, S. R., and F. E. Khasawneh. 1980. Use and limitations of physical –chemical criteria for assessing the status phosphorus in soil. P.361-410.In F. E. Khasawneh, E. C. Sample, and E.J. Kkamprath(ed). The role of phosphorus in agriculture. Amer. Society of Agron, Madison, Wis. Paul, E.A., and F.E. Clark, 1988. Soil Microbiol. Biochem. Academic Press. San Diego, CA. Quispel, A. 1988. Hellriegel and Wilfarth’s discovery of nitrogen fixation hundred years ago. In Bothe. H., F. J. de Bruijn and W.E.Newton. Nitrogen Fixation:Hundred years After. p.3-12. Germany. Gustav Fisher Verlag, Gustave Fischer Verlag GmbH & Co KG. Raj, J., D.J. Bagyaraj, and A. Manjunath. 1981. Influence of soil inoculation with vescular-arbuscular mycorrha and a phosphate – dissolving bacterium on plant growth and 32P-uptake. Soil Biol. Biochem. 13:105-108. Rhoades, J. D. 1982. Soluble salts. 167-179. In A. L. Page(ed.) Methods of Soil Analysis, Part 2. 2nd edition. ASA, Madison, WI. USA. Saber, M.S., M. Yousry, and M.Kabesh. 1977. Effect of manganese application on the activity of phosphate dissolving bacteria in a calcareous soil cultivated with pea plants. Plant Soil. 45:493-507. Sharma, S.N., S. B. Ray, S. L. Pandey, and R. Prasad. 1983. Effect of irrigation, pyrites and phosphobacteria on the efficiency of rock phosphate appied to lentils. Soil Sci. Camb. 101:467-472. Souchie, E. L., O. J. Saggin-Junior, E. M. R. Silva, E. F. C. Campello, R. Azcon, and J. M. Barea. 2006. Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty, RJ-Brazil. An. Acad. Bras. Cienc. 78(1): 183-193. Sperber, J.I. 1958a. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Austr. J. Agri. Res. 9:778-781. Sperber, J. I. 1958b. Release of phosphate from soil minerals by hydrogen sulphide. Nature 181:934. Subba Rao, N. S. 1982. Biofertilizers in agriculture. 129-136. New Delhi. Thakuria, D., N. C. Talukdar, C. Goswami, S. Hazarika, R. C. Boro, and M. R. Khan. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science. 86: 978-985. Tisdale, S. L., W. L.Nelson, and J. D. Beaton, 1985. Soil Fertility and Fertilizers. 189-248. Macmillan Pub. New York. Ullah, A. H., and D. M. Gibson. 1987. Extracellular phytase(E. C. 3.1.3.8) from Aspergillus ficuum NRRL 3155: Purication and characterization. Prep. Biochem. 17:63-91. Vincent, J. M. 1970. A Manual for the Practical Study of Root – Nodule Bacteria. IBP Handbook No.15, Black Well Sci., Oxford, Great Britain. Vincent, J. M., P. S. Nutman, and F. A. Skinner. 1979. The identification and dassification of Rhizobium. In dentification Methods for Microbiologist. Znd ed., Soc. Appl. Bacterol. Techn. Ser. No. 14, F.A. Skinner, and D.M. Wahid, O. A. A. and T. A. Mehana. 2000. Impact of phosphate - solubilizing fungi on the yield and phosphorous-uptake by wheat and faba bean plants. Microbial. Res. 155: 221-227. Watts, D., and J.R. MacBeath. 2001. Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. Methods Mol. Biol. 167:153-170. Wollum Ⅱ, A. G. 1982. Cultural methods for soil micoorganisms. 781-802. In A L. Page et al. (ed.), Methods of Soil Analysis, Part 2. Chemical and microbiological properies. ASA, Madison, WI, USA. Young, C.C., K. T. Cheng and G. R. Waller. 1991. Phenolic compounds in conducive and suppressive soils on clubroot disease of crucifers. Soil Biol. Biochem. 23:1183-1189.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/28114-
dc.description.abstract由於磷肥施用到土壤中容易被固定,長期下來土壤雖已累積大量的無機態磷及有機態磷,但不易被植物吸收利用,因此本研究探討分解有機磷細菌的施用對這些難溶磷化合物釋放出有效磷的影響,並以盆栽試驗來測試添加有機磷分解細菌菌液於土壤對植物生長的影響。 本研究從豆科植物根部分離、純化並篩選出兩株具有分解有機磷能力的菌株,經16S rDN 定序鑑定結果菌種名分別為 Rhizobium sp. ORS214及 Rhizobium rhizogenes 163C。此兩菌株經生理與生化測試,結果顯示皆可在廣泛的 pH (4.5-8.5)環境下生長良好,並且在 40℃溫度下仍然可以生長,液體培養基的NaCl濃度達1.5%以上時,即無法生長;此兩株菌以每分鐘200rpm水平振盪,並配合30℃溫度下培養,測得約有90% 的植酸酵素位於胞外,在 pH 7.0 、 37℃反應條件下所測得之活性分別為1.21×10-2 U ml-1及1.27×10-2 U ml-1。 Rhizobium sp ORS214 所產出的植酸酵素,最高活性出現在20℃時,且受到二價金屬離子 Ba2+ 、 Zn2+ 及 Mg2+ 的抑制,抑制程度分別為58% 、 83% 及84% ;而 Rhizobium rhizogenes 163C 所產生的植酸酵素最高活性溫度則在40℃,且受到Ba2+ 、 Zn2+ 及 Mg2+依序為22%、74%及65%的抑制。將 Rhizobium sp ORS214及 Rhizobium rhizogenes163C菌液分別添加於種植小白菜及紅豆的盆栽土壤試驗,結果顯示,添加菌液後對植株的鮮重及株高均有增加的趨勢,但增加的效益,因土壤的不同而差異甚大,就本試驗結果而言, Rhizobium sp ORS214菌液施在后里土壤中,對小白菜株高及鮮重的提昇較顯著。但總觀實驗目的而言,所加入的兩菌種Rhizobium sp ORS214及Rhizobium rhizogenes 163C對小白菜及紅豆等二種作物生長並無明顯的提昇。zh_TW
dc.description.abstractThe inorganic and organic phosphate fertilizer are easily to be fixed by soil and had accumulated after a long time, which can not be absorbed by plant. Hence we use the organic P-hydrolyzing bacteria to release the P which are difficult to be used by plant, and pot experiment was introduced to test the effect of this kind of bacteria on the growth of plant. Rhizobia which can hydrolyze organic phosphate were isolated from legume plant, and the bacteria were identified as Rhizobium sp. and Rhizobium rhizogenes strain 163C based on the 16S rDNA sequence. The biochemical and physiological characteristics of these two bacterial stains was done. These two bacterial strains can grow well at widely pH range (between 4.5-8.5), but the highest growth temperature was only 40℃, the highest salt tolerance was only 1.5% NaCl. The phytase of these two bacterial strains was analyzed and we found that about 90% of the phytase activity was detected in extracellular portion and 1.21×10-2 U ml-1及1.27×10-2 U ml-1 at 37℃ and pH 7.0 were detected. The highest phytase activity of Rhizobium sp ORS214 was shown at 20℃, and was inhibited by divalent mental ions Barium chloride, Zinc chloride, and Magnesium chloride for 58 %, 83% and 84%, and Rhizobium rhizogenes 163C produced phytase shown the highest activity at 40℃, and was inhibited by Barium chloride, Zinc chloride, and Magnesium chloride for 22%, 74% and 65%. The pot test for inoculation of white cabbage and aduki bean plant with Rhizobium sp ORS214 and Rhizobium rhizogenes 163C revealed that inoculated treatments has the potential to increase the fresh weight and shoot length, but the impact of soil classes was much. The results of this experiment showed that the increment in fresh shoot weight and shoot length of white cabbage by Rhizobium sp. ORS214 was more apparent with acidic soil in Houli Township. But the growth of the two crops (white cabbage and aduki bean) were not significantly increased by inoculation of the two bacterial strains Rhizobium sp ORS214 and Rhizobium rhizogenes 163C in the comprehensive purpose of this experiments.zh_TW
dc.description.tableofcontents摘要……………………………………………………………….………………… Ⅰ Abstract……………………………………………………………...…………… Ⅲ 目錄…………………………………………………………………….……………Ⅴ 表次……………………………………………………………………….………… Ⅶ 圖次………………………………………………………………………….……… Ⅷ 前言 ………………………………………………………………………….……… 1 前人研究………………………………………………………………………………3 一、土壤中有機磷的型態及其重要性……………………………………….…… 3 二、有機磷結構及發展應用…………………………………………………..……4 三、溶有機磷機制之探討……………………………………………………….… 7 四、溶磷微生物研究之發展…………………………………………………….… 7 五、接種溶磷菌至土壤中對土壤有效磷與作物生長之效應……………………10 (一) 接種溶磷菌至土壤中之效應…………………………………….…10 (二) 複合接種溶磷菌與根瘤固氮菌對植物之效應…………………….11 材料與方法…………………………………………………………………….…… 13 一、實驗菌株的篩選………………………………………………………………13 (一)豆科根瘤固氮細菌之篩選…………………………...………………13 (二)溶有機磷細菌之篩選…………………………...……………………16 二、固氮溶有機磷菌株之生長與特性分析…………………………………...… 18 (一) 菌株於不同pH培養基中生長之測試…………………………...…18 (二) 菌株於不同溫度下生長之測試………………………………….…18 (三) 菌株耐鹽性之測試……………………………………………….…18 (四) 菌株於不同培養基生長速度之測試…………...………………..…19 三、菌株植酸酵素活性之測定……………………………………………………19 四、盆栽試驗之設計………………………………………………………………20 五、土壤可溶性無機磷之測定……………………………………………………21 六、菌種鑑定………………………………………………………………………23 結果與討論……………………………………………………………………….… 30 一、本土豆科根瘤固氮分解有機磷細菌之分離及篩選…………...………….…30 二、Rhizobium sp. ORS214與Rhizobium rhizogenes strain 163C之生長及特性分析 ………………………………...……………………………………… 33 (一) 不同pH對菌株生長之影響…………………………….……………33 (二) 不同溫度對菌株生長之影響…………………….……..……………34 (三) 菌株之耐鹽性…………………………………………...……………35 (四) 不同培養基對菌株生長速度之影響…………………...……………36 三、菌株分泌胞內、胞外植酸酵素量與活性之比較………..……………………38 四、金屬離子、溫度及酸鹼度對菌株植酸酵素活性之影響………………….….39 (一)金屬離子對菌株植酸酵素活性之影響 ……………………...………39 (二)不同溫度對菌株植酸酵素活性之影響 ………………………...……40 (三)不同pH値對菌株植酸酵素活性之影響……………………………...42 五、接種Rhizobium sp. ORS214與Rhizobium rhizogenes strain 163C於土壤對作物生長之影響 ………………………………………………...…………43 (一)接種微生物對小白菜之影響………………………………………… 43 (二)接種微生物對紅豆之影響…………………………………………… 44 結論……………………………………………………………………………..……51 參考文獻……………………………………………………………………….…… 52 附表1、供試土壤之基本性質……………………………………………….……59 表次 表1、植酸酵素之發展史……………………...………………………………………5 表2、常見的土壤溶磷微生物及磷源………………..……………………………… 9 表3、豆科植物之來源……………………………………………………………… 14 表4、酵母抽出物甘露醇洋菜培養基之成份……………………………………… 15 表5、篩選植酸酵素產出菌之培養基……………………………………………… 17 表6、以1F/9R引子增殖之DNA片段序列比對結果……………………………… 31 表7、在以植酸為磷源之培養基,菌株在不同pH條件下之生長………………..…33 表8、以植酸鈣為唯一磷源之培養基,菌株在不同溫度下生長之 測試…………………………………………………………..………… 34 表9、在以植酸為唯一磷源之培養基,菌株在不同鹽類濃度下生長之測試…..… 35 表10、菌株在不同培養基中,世代時間及菌數……………...………………..……37 表11、胞內及胞外植酸酵素活性……………………………...………………….…38 表12、胞內及胞外植酸酵素比例……………………………...……………………39 表13、金屬離子對菌株植酸酵素活性之影響………………...……………………40 圖次 圖1、植酸鹽之化學結構……………………………………………………...………4 圖2、分離菌株在Phytin minimal agar平面培養基上之菌落型態.………….……..32 圖3、不同溫度條件下對菌株植酸酵素之相對活 ………………………..……… 41 圖4、不同pH條件下對菌株植酸酵素之相對活性………………...…….…………42 圖5、農試所土壤在不同處理下對小白菜株高之影響…………...………….…… 45 圖6、農試所土壤在不同處理下對小白菜鮮重之影響…………...…………….… 45 圖7、圳寮土壤在不同處理下對小白菜株高之影響……………...………….…… 46 圖8、圳寮土壤在不同處理下對小白菜鮮重之影響……………...…………….… 46 圖9、后里土壤在不同處理下對小白菜株高之影響……………...………….…… 47 圖10、后里土壤在不同處理下對小白菜鮮重之影響…………...…………………47 圖11、農試所土壤在不同處理下對紅豆株高之影響…………...……………….…48 圖12、農試所土壤在不同處理下對紅豆鮮重之影響…………...…………………48 圖13、圳寮土壤在不同處理下對紅豆株高之影響……………...…………………49 圖14、圳寮土壤在不同處理下對紅豆鮮重之影響………………..…...………..…49 圖15、后里土壤在不同處理下對紅豆株高之影響………………...……………....50 圖16、后里土壤在不同處理下對紅豆鮮重之影響…………………...……………50zh_TW
dc.language.isoen_USzh_TW
dc.publisher土壤環境科學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0105200801073500en_US
dc.subjectorganic phosphate,en_US
dc.subject有機磷zh_TW
dc.subjectphytaseen_US
dc.subjectpot experimenten_US
dc.subject植酸酵素zh_TW
dc.subject盆栽試驗zh_TW
dc.title分解有機磷細菌之特性分析及對作物生長之效應zh_TW
dc.titleCharacterization of dissolve organic phosphorus bacteriumen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:土壤環境科學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.