Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2812
標題: 利用奈米銀粒子及微振動平台提升阻抗分析檢測靈敏度
Sensitivity enhancement of electrochemical impedance spectroscopy (EIS) analysis using silver nanoparticles and a micro vibration stage
作者: 劉怡芬
Liu, Yi-Fen
關鍵字: 奈米結構生醫晶片;nanostructured biosensor;奈米銀顆粒;電化學阻抗譜分析;微水平振動;silver nanoparticles;electrochemical impedance spectroscopy analysis;micro vibration
出版社: 機械工程學系所
引用: [1] Bernstein, J., “Ueber den zeitlichen Verlauf der negativen Schwankung des Nervenstroms,” Pflugers Arch 1:173–207 (1868) [2] Diao, P., Guo, M., and Tong, R., “Characterization of defects in the formation process of self-assembled thiol monolayers by electrochemical impedance spectroscopy,” J Electroanal Chem, Vol. 495, pp.98-105 (2001) [3] Aoki, A., and Miyashita, T., “Impedance analysis of the electron transfer process in redox polymer Lan-gmuir-Blodgett films,” colloids Surf A:Physicochem Eng Aspects, Vol. 198, pp.671-676 (2002) [4] Pei, R., Cheng, Z., Wang, E., and Yang, X., “Amplification of antigen-antibody interactions based on biotin labeled protein-strepavidin network complex using impedance spectroscopy,” Biosens Bioelecton, Vol. 16, pp. 355-361 (2001) [5] Wegener, J., Keese, C.R., and Giaever, I., “Electric cell-substrate impedance sening (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces,” Experimental Cell Res, Vol. 259, pp. 158-166 (2000) [6] Kyle, A. H., Chan, C.T.O., and Minchinton, A.I., “Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy,” Biophys J, Vol. 76, pp. 2640-2648 (1999) [7] Xu, Y., Jiang, Y., Cai, H., He, P.G., and Fang, Y.Z., “Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode,” Anal Chim Acta, Vol. 516, pp. 16-27 (2004) [8] Long, Y.T., Li, C.Z., Kraatz, H.B., and Lee, J.S., “AC impedance spectroscopy of native DNA and M-DNA,” Biophys J, Vol, 84, pp. 3218-3225 (2003) [9] Ali A. Ensafia, M. Taeia, H.R. Rahmanib, T. Khayamiana, “Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode,” Electrochimica Acta, Vol.56, pp.8176-8183 (2011) [10] Palchetti, I., Berti, F., Laschi, S., Marrazza, G., and Mascini, M., “Electrochemical characterization of PNA/DNA hybridized layer using SECM and EIS techniques,” Electrical Engineering, Vol. 54, pp. 181-184 (2010) [11] Varshney, M., Li, Y., Srinivasan, B., Tung, S., “Label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples,” Sensors and Actuators, Vol.128, pp.99-107 (2007) [12] Patolsky, F., Zayats, M., Katz, E. and Willner, I., “Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by faradaic impedance spectroscopy,cyclic voltammetry, and microgravimetric quartz crystal microbalance analysis,” Anal Chem, Vol. 71, pp.3171-3180 (1999) [13] Bigelow, W.C., Pickett, D.L., and Zisman, W.A., “Leophobic monolayers: I. Films adsorbed from solution in non-polar liquids.”Colloid Interface Sci,pp. 513-538 (1946) [14] Finklea, H.O., Avery, S., and Lynch, M., “Locking oriented monolayers of alkyl mercaptans on gold electrodes.”Langmuir, Vol.3, pp. 409-413 (1987) [15] Nuzzo, R.G., Fusco, F.A., and Allara, D.L., “Pontaneously organized molecularassemblies. 3. preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces.”Journal of the American Chemical Society , Vol.109, pp. 2358-2368 (1987) [16] Everett, R., Welch, T.L., Reed, L., and Faules, I.F., “Potential- dependent stability of self-assembled organothiols on gold electrodes in methylene chloride.” Analytical Chemistry, Vol. 67, pp.292-298 (1995) [17] Imabayashi, S., Hobara, D., Kakiuchi, T., “Elective replacement of adsorbed alkanethiols in phase-separated binary self-assembled monolayers by electrochemical partial desorption.”Langmuir, Vol.13, pp.4502-4504 (1997) [18] Frederix, F., Bonroy, K., and Laureyn, W., “Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold.” Langmuir,”Vol.19, pp.4351-4357 (2003) [19] Ding, S.J., Chang, B.W., Wu, C.C., Lai, M.F., and Chang, H.C., “Electrochemical evaluation of avidin–biotin interaction on self-assembled gold electrodes.” Electrochimica Acta,Vol.50, pp.3660-3666 (2005) [20] Eteshol, E., Leckband, D., “Development and characterization of an ELISA assay in PDMS microfluidic channels,” Sensors and Actuators, Vol.72, pp.129-133 (2001) [21] Heyries, K.A., Loughran, M.G., Hoffmann, D., Homsy, A., Blum, L.J., Marquette, C.A, “Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies,” Biosensors and Bioelectronics, Vol.23, pp.1812-1818 (2008) [22] Yang, K.S., Kim, H.J., Ahn, J.K., Kim, D.H., “Microfluidic chip with porous anodic alumina integrated with PDMS/glass substrate for immuno-diagnosis,” Current Applied Physics,Vol.9, pp.60-65 (2009) [23] Chang, B.W., Chen, C.H., Ding, S.J., Chen, D.C., Chang, H.C., “Impedimetric monitoring of cell attachment on interdigitated microelectrodes,” Sensors and Actuators, Vol.105, pp.159-163 (2005) [24] Suehiro, J., Ohtsubo, A., Hatano, T., Hara, M., “Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip,” Sensors and Actuators, Vol.119, pp.319-326 (2006) [25] Javanmard, M., Talasaz, A.H., Nemat-Gorgani, M., Pease, F., Ronaghi, M., Davis, R.W., “Targeted cell detection based on microchannel gating,” Biomicrofluidics, Vol.1,pp.44103 (2007) [26] Li, Y., Su, X.L., “Microfluidics-Based Optical Biosensing Method for Rapid Detection of Escherichia Coli O157:H7,” Journal of Rapid Methods and Automation in Microbiology, Vol.14, pp.96-109 (2006) [27] Tsai, J.J., Bau, I.J., Chen, H.T., Lin, Y.T., and Wang, G.J., “A novel nanostructured biosensor for the detection of the dust mite antigen Der p2,” Inter. J. Nanomedicine, Vol.6, pp 1-8 (2011). [28] Jiang, H., Moon, K.S., Li, Y.and Wong, C.P., “Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites,” Chem. Mater., Vol. 18,No.13, pp.69-2973 (2006). [29] Lin, L., Qiu, P., Cao, X., Jin, L., “Colloidal silver nanoparticles modified electrode and its application to the electroanalysis of Cytochrome,“ Electrochimica Acta ,Vol.53, No.16, pp.5368-5372 (2008). [30] Lee, P.C., and Meisel, D.J., “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” Jounal Physical Chemistry ,Vol. 86, pp.3391-3395 (1982). [31] Clark, L.C., and Lyons, C., “Electrode systems for continuous monitoring incardiovascular surgery.” Annals of the New York Academy of Sciences., Vol.102, pp. 29-45 (1962). [32] Lopez, M.A., Ortega, F., Dominguez, E., and Katakis, I., “Electrochemical immunosensor for the detection of atrazine”. J Mol Recognit, Vol.11, pp.178-181 (1998). [33] Amirudin, A., and Thierry, D., “Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals.” Progress Organic Coatings, Vol.26, pp.1-28 (1995) [34] Jing, W., and Wang, E., “Paint-freeze method to from self-assembled alkanethio bilayers on gold.” Analytical Sciences, Vol.14, pp.117-120 (1998) [35] Tlili, C., Reybier, K., Ponsonnet, L., Martelet, C., Ouada, H.B., Lagarde, M., and Renault, N.J., “Fibroblast cells:a sensing bioelement for glucose detection byimpedance spectroscopy.” Analytical Chemistry, Vol.75, pp.3340-3344 (2003) [36] Bordi, F., Cametti, C., and Gliozzi, A., “Impedance measurements of self-assembled lipid bilayer membranes on the tip of an electrode.” Bioelectrochemistry, Vol.57, pp.39-46 (2002) [37] Katz, E., Alfonta, L., and Willner, I., “Chronopotentiometry and faradaic impedancespectroscopy as methods for signal transduction in immunosensors.” Sensors and Actuators, Vol.76, pp.134-141 (2001) [38] Yang, L., Li, Y., and Erf, G.F., “Interdigitated array microelectrode- based electrochemicalimpedance immunosensor for detection of Escherichia coli O157:H7.” Analytical Chemistry, Vol.76, pp.1107-1113 (2004) [39] Macdonald, J.R., “Impedance Spectroscopy,” Annals of Biomedical Engineering, Vol.20, pp.289-305 (1992) [40] 李英儒,“交流電阻抗分析法於脂多醣體檢測之應用”,國立成功大學醫學工程所碩士論文,(2001) [41] Washington State University: http://www.wsu.edu/~collins/Brownian-poster-final.pdf [42] Bray, D., “Cell Movement: from molecules to motility 2nd edition,” Garland Publishing, New York, (2001) [43] 高濂、孫靜、劉陽橋,“奈米粉體的分散及表面改性”,五南圖書出版股份有限公司,(2005) [44] Chen, Y.S., Wu, C.C., Tsai, J.J., and Wang, G.J., “An electrochemical impedimetric biosensor based on a nanostructured polycarbonate (PC) substrate,” Inter. J. Nanomedicine, Vol. 7, pp.133-140 (2012) [45] 傅世澤, “奈微米級定位平台最佳化設計與分析”中興大學機械工程研究所碩士論文,(1991) [46] “Physilk Instrument”,PI, (1998)
摘要: 
電化學阻抗分析可在較短時間以較高之靈敏度量測待測物濃度,已逐漸被應用於生醫檢測,但目前感測技術仍有貼附不均勻、樣本準備時間長、低靈敏度等問題仍待解決。因此本研究提出兩種方法以提升電化學阻抗分析之檢測性能。本研究先以銀奈米粒子提升奈米結構電極之導電性,利用不同電壓參數沉積奈米銀顆粒,找出較佳之沉積條件,再以過敏源Der p2做為待測物,確認奈米金、銀複合電極較奈米金電極有更低之阻抗,亦即沉積奈米銀確實有提升試片之導電性;接著以微水平振動平台縮短待測物之貼附時間並提升貼附之均勻性,將微水平震動平台固定振幅,並由不同頻率控制微水平震動平台之水平速度,實驗結果顯示之振動頻率可提升待測物之貼附量,而微水平振動法亦較傳統浸泡法有更佳之待測物貼附均勻性,此外;微水平振動法之檢測標準曲線亦較傳統浸泡法有較大之斜率,顯示微水平振動法可檢測更細微之濃度變化,亦能提高感測器之靈敏度。

Electrochemical impedance spectroscopy (EIS) analysis can detect an analyte with a higher sensitivity in a shorter time. The self-assembled monolayer (SAM) technique is the usually employed approach to attach analytes to the transducer. In general, the relative time-consuming sample preparation time and the non-uniform immobilization of analyte on the sensing electrode are the commonly encountered problems of the SAM method. In this study, two methods are proposed to enhance the analysis efficiency of the EIS analysis. A nanostructured biosensor with uniformly deposited gold nanoparticles (GNPs) as the sensing electrode was implemented for the EIS analysis.
To enhance the charge transfer efficiency of the biosensor, silver nanoparticles (SNPs) were deposited on the GNP layer. Several voltages were applied during the electrophoretic deposition of the SNPs to obtain an optimal deposition voltage. EIS analyses for the onductance comparisons between the SNP deposited electrodes and the GNP only electrodes with the Der p2 immobilized were carried out. The results indicate that the SNP deposited electrodes have better charge transferring characteristic than the GNP only electrodes.
For the reducing of the sample preparation time and the enhancement of the adhesion and adhesive uniformity of the analyte, this study proposes a simple micro vibration approach based on the Bernoulli’s theory. The detections of the group 2 allergen Der p2 demonstrate that a suitable applied frequency under fixed amplitude can considerably reduce the sample preparation time and improve the adhesion and adhesive uniformity of the analyte. It was also found that the micro vibration approach can give a relatively larger detection range, provide a better detection linearity, result in a standard detection curve with a larger slop so that the sensitivity of the sensor can be increased, and decrease the detection error due to the measurement error. The proposed scheme can be further applied to any detection method that uses SAM method for analyte immobilization.
URI: http://hdl.handle.net/11455/2812
其他識別: U0005-1707201214351700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.