Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28122
標題: 在密度泛函理論的基礎下建立氧化鐵吸附芳香族有機酸之線性自由能量關係
Establishing DFT-based Linear Free Energy Relationships for the Sorption Mechanisms of Aromatic Organic Acids with Iron Oxides
作者: 劉孟葳
Liu, Meng-Wei
關鍵字: iron oxide;氧化鐵;organic acid;surface complexation model;DFT;HSAB;LFER;有機酸;表面錯合模式;計算化學;密度泛函;軟硬酸鹼;線性自由能量
出版社: 土壤環境科學系所
引用: 吳佳正、謝汶興、王原璋、林財富、鄭仲凱,2005,鐵氧化物吸附劑之開發與應用,界面科學學誌。27:123-132。 蘇亮誌,2004,鐵氧化物吸附與鐵氧磁法處理重金屬溶液之研究,國立成功大學化學工程研究所,碩士論文。 Abraham, M. H., R. M.Doherty, M. J. Kamlet, R. W. Taft. 1986. A new look at acids and bases. Chem. Britain. 22:551-554. Ali, M. A., and D. A. Dzombak. 1996. Effect of simple organic acids on sorption of Cu2+ and Ca2+ on goethite. Geochimica et Cosmochimica Acta. 60:291-304. Chandrakumar, K. R. S., and S. Pal. 2002. A systematic study on the reactivity of Lewis acid - base complexes through the local hard-soft acid - base principle. J. Phys. Chem. A. 106:11775-11781. Davis, J. A., R. O. James, and J. O. Leckie. 1978. Surface ionization and complexation at the oxide/water interface I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci. 63:480-449. Davis, J. A., and J. O. Leckie. 1978. Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J. Colloid Interface Sci. 67:90-107. Davis, J. A. 1982. Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim. Cosmochim. Acta. 46:2381-2393. Dzombak, D. A., and F. M. M. Morel. 1986. Adsorption of inorganic pollutants in aquatic systems. J. Hydraulic Eng. 112:588-598. Dzombak, D. A., and F. M. M. Morel. 1987. J. Hydraulic Eng. 113:430 Dzombak, D. A., and F. M. M. Morel. 1990. Surface complexation Modeling: Hydrous ferric oxide. John Wiley, New York. Edwards, M., M. M. Benjamin, and J. N. Ryan. 1996. Role of organic acidity in sorption of natural organic matter (NOM) to oxide surfaces. Colloids Surf. A. 107:297-307 Evanko, C. R., and D. A. Dzombak. 1999. Surface complexation modeling of organic acid sorption to goethite. J. Colloid Interface Sci. 214:189-206. Filius,J. D., T. Hiemstra, and W. H. Van Riemsdijk. 1997. Adsorption of small weak organic acids on goethite: Modeling of mechanisms. J. Colloid Interface Sci. 195:368-380. Frisch, M. J., G. W. Trucks, and H. B. Schlegel et al. 2003. Gaussian 03 [M]. Pittsburgh: Gaussian Inc. Fukui, K. 1975. Theory of orientation and stereoselection. Berlin: Springer-Verlag. Gerke, J. 1993. Solubilization of iron (III) from humic-iron complexes, humic/ iron oxide mixtures, and from poorly ordered iron oxide by organic acids. Consequences for phosphorus adsorption. Zeitschrift fuer Pflanzenernaehrung und Bodenkunde. 156:253-257. Gu, B., J. Schmitt, Z. Chen, L. Liang, and J. F. McCarthy. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 28:38-46. Gu, B., T. L. Mehlhorn, L. Liang, and J. F. McCarthy. 1996. Competitive adsorption, displacement, and transport of organic matter on iron oxide : I. Competitive adsorption. Geochimica et Cosmochimica Acta. 66:1943-1950. Hayes, K. F., and J. O. Leckie. 1987. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface. J. Colloid Interface Sci. 115:564-572. Hayes, K. F., C. Papelis, and J. O. Leckie. 1988. Modeling ionic strength effects on antion adsorption at hydrous oxide/solution interface. J. Colloid Interface Sci. 125:717-726. Healy, T. W., and L. R. White. 1978. Ionizable surface group models of aqueous interface. Adv. Colloid Interface Sci. 9:303-345. Hehre, W. J., L. Radom, P. V. R. Schleyer, and J. A. Pople. 1986. Ab initio molecular orbital theory. John Wiley & Sons. Hohl, M., and W. Stumm. 1976. Interaction of Pb2+ with hydrous ã-Al2O3. J. Colloid Interface Sci. 43:409-420. Horanyi, G. 2002. Specific adsorption of simple organic acids on metal(hydr)oxides: a radiotracer approach. J. Colloid Interface Sci. 254:214-221. Kim, E. K., and H. W. Walker. 2000. Effect of cationic polymer additives on the adsorption of humic acid onto iron oxide particles. American Chemical Society, Division of Environmental Chemistry. 40:79-81. Klopman, G. 1968. Chemical reactivity and the concept of charge-and frontier-controlled reactions. J. Am. Chem. Soc. 90:223-234. Kohn, W. 1999. Electronic structure of matter-wave functions and density functional. Rev. Mod. Phys. 71:1253-1266. Koopmans, T. 1934. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica(in German)(Amsterdam). 1:104-113. Korolev, V. V., A. V. Blinov, and A. G. Ramazanova. 2004. Adsorption of fatty acids from solutions in organic solvents on the surface of finely dispersed magnetite: 2. Heats of oleic, linoleic, and linolenic acid adsorption from carbon tetrachloride and hexane. Colloid Journal. 66:705-708. Kummert, R., and W. Stumm. 1980. The surface complexation of organic acids on hydrous γ-alumina. J. Colloid Interface Sci. 75:373-385. Lai, C. H., C. Y. Chen, B. L. Wei, and S. H. Yeh. 2002. Cadmium adsoption on goethite-coated sand in the presence of humic acid. Water Research. 36:4943-4950. Morrill, L. G., B. C. Mahilum, and S. H. Mohiuddin. 1982. Sorption degradation and persistence. Organic Compounds in Soil, Ann Arbor Sci. Publishers, Ann Arbor, Michigan. Parr, R. G.., and R. G. Pearson. 1983. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105: 7512 - 7516. Parr, R. G., and W. Yang. 1989. Density-functional theory of atoms and molecules [M]. New York : Oxford University Press:87-104. Pearson, R. G. 1963. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 85: 3533 - 3539. Pearson, R. G. 1986. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA. 83:8440-8441. Pearson, R. G. 2005. Chemical hardness and density functional theory. J. Chem. Sci. 117:369–377. Pokhrel, D., and T. Viraraghavan. 2008. Organic arsenic removal from an aqueous solution by iron oxide-coated fungal biomass: An analysis of factors influencing adsorption. Chemical Engineering Journal. 140:165-172. Schindler, P. W. and W. Stumm. 1987. The surface chemistry of oxides, hydroxides and oxide minerals. Aquatic Surface Chemistry: Chemical Process at Partical-Water Interface. Stumm, W. Ed.,John Wiley, New York. Schindler, P. W., B. Fuerst, R. Dick, and P. U. Wolf. 1976. Ligand properties of surface silanol groups. I. Surface complex formation with iron(3+), copper(2+), cadmium(2+), and lead(2+). J. Colloid Interface Sci. 55:469-475. Schwertmann, U., and R. M. Taylor, 1989. Iron oxides.Soil Sci. Soc. Am. J. 379-482. Stumm, W. 1992. Chemistry of the solid-water interface. John Wiley & Sons, Inc., New York. Vignale, G., and M. Rasolt. 1987. Density-functional theory in strong magnetic fields. Phys. Rev. Lett. 59: 2360 – 2363. Westall, J., and H. Hohl, 1980. A comparison of electrostatic models for the oxide/solution interface. Adv. Colloid Interface Sci. 12:265-294. Taylor, H. S. 1931. The activation energy of adsorption processes. J. Am. Chem. Soc. 53:578-597. Tipping, E. 1981. The adsorption of aquatic humic substances by iron oxides. Geochim. Cosmochim. Acta. 45:191-199 Xu, R., and Y. Wang. 2003. Effect of low-molecular-weight organic acids on the adsorption of fluoride on soils with variable charge. Huanjing Kexue Xuebao. 23:405-407. Xu, R., W. Qian, and J. Li. 2004. Adsorption of low molecular weight organic acids by latosols. Turang. 36:446-448. Yates, D. E., S. Levine, and T. W. Healy. 1974. Site-binding model of the electrical double layer at the oxide/water interface. Chem. Soc. Farraday Trans. I. 70:1807-1818. Yost, E. C., M. I. Tejedor-Tejedor, and M. A. Anderson. 1990. In situ CIR-FTIR characterization of salicylate complexes at the goethite/aqueous solution interface. Environ. Sci. Technol. 24:822-828.
摘要: 
有機酸具有官能基得以與其他陽離子發生錯合反應,因此影響到土壤養分及污染物在環境中之移動性及生物可利用性。而土壤中含有豐富的氧化鐵,具有特殊的吸附能力。關於氧化鐵與有機酸之吸附行為已被廣泛的研究,由於表面活性濃度不易由實驗得到,因此其吸附的反應機制常以表面錯合模式來推估。本研究以密度泛函理論為基礎結合軟硬酸鹼理論,將芳香性有機酸分子結構模型計算所得之化學參數,與以表面錯合模式所估算之吸附常數做線性自由能量關係並探討其吸附機制。將氧化鐵對芳香族有機酸分子的吸附化學反應區分為特異性與非特異性吸附。而特異性又區分為整體性(Global)與局域性(Local)兩大部分,而再細分為電荷控制與軌域控制。迴歸的過程中,發現以局域性電荷控制參數影響最大,其次為整體性參數及溶劑化參數,可知吸附反應中,主要還是受到庫倫靜電交互作用的影響,另外還必須考慮凡德瓦力的影響以及氫鍵的作用。而最終得到的預測方程式,預測性良好,確立了氧化鐵吸附芳香族有機酸分子是以哪些參數為代表,提供理論化學支持根據。更可由分子內局域性的變化來解釋反應機制,快速了解複雜系統中的反應機制,而不再是單一或片面的化學現象解釋。

Organic acids that complex with cations by functional groups affect the mobility and the bioavailability of nutrients and pollutants of soils in the environment. There are copious iron oxides in soils that are capable of adsorption. The adsorption of organic acids to iron oxides has been widely researched. Surface complexation model was performed for understanding the mechanism of sorptions. The aims of the study is to establish a LFER predictive equation , and also to discuss the sorption mechanisms of aromatic organic acids with iron oxides. The reactivity descriptors calculated by molecular model, and were based on the density functional theory (DFT) combined with the hard-soft acid-base (HSAB) principle. Calculated parameters will carry on the multi-regression analysis with sorption constants (log K) were obtained using surface complexation models. The chemical reaction of organic molecule divided into non-specific effect and specific effect two major parts. Non-specific effect is solvation interaction. Specific effect divided into global and local two parts, and both they subdivided into charge controlled and orbital controlled two parts. The result of multi-regression analysis indicated that the sorption reactions are mainly effected by the local charge controlled interaction. Molecular global interaction and salvation interaction are secondary. The sorption mechanism of aromatic organic acids with iron oxides are mainly effected by the Coulomb interaction, and also consider partition, Van der Waals forces, and the hydrogen bonds. Finally the optimum prediction equation was obtained and results of forecast are extremely good. The equation can analyse the reaction mechanism by electrons redistribution in molecule structure, and supported by the theoretical chemistry foundation basis.
URI: http://hdl.handle.net/11455/28122
其他識別: U0005-1601200915314100
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.