Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28134
標題: 具磁性TiO2和polyoxometalates對Cr(VI)之光還原研究
Photoreduction of Cr(VI) on magnetized TiO2 and polyoxometalates
作者: 何雅婷
He, Ya-Ting
關鍵字: Cr(VI) TiO2 polyoxometalates(POMs);六價鉻 二氧化鈦 聚合氧化金屬鹽類
出版社: 土壤環境科學系所
引用: 王毅群、姚明輝。2007。三價鉻治療糖尿病的作用及其機制,中國臨床藥學雜誌。 呂宗昕。2003。奈米科技與光觸媒。商周出版。 吳玟靜。2005。錳和鋁取代型針鐵礦對六價鉻之吸附及光催化反應,碩士論文,中興大學,台中。 許嘉戀。2007。不同pH條件下無機陰離子與Fe(III)對Cr(VI)光還原反應的影響,碩士論文,中興大學,台中。 Anderson, C., and A. J. Bard. 1995. An improved photocatalyst of TiO/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99:9882-9885. Androulaki, E., A. Hiskia, D. Dimotikali, C. Minero, P. Calza, E. Pelizzetti, and E. Papaconstantinou. 2000. Light induced elimination of mono- and polychlorinated phenols from aqueous solutions by PW12O403-. The case of 2,4,6-trichlorophenol. Environ. Sci. Technol. 34:2024-2028. Antonaraki, S., E. Androulaki, D. Dimotikali, A. Hiskia, and E. Papaconstantinou. 2002. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2. J. Photoch. Photobio. A 148:191-197. Bartlett, R. J., and B. R. James. 1996. Chromium. In S.D.J. et. al., Ed. Methods of Soil Analysis, Part 3, Chemical Methods. SSSA, Madison. Beydoun, D., and R. Amal. 2002. Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst. Mater. Sci. Eng. B94:71-81. Beydoun, D., R. Amala, G. Lowb, and S. McEvoy. 2002a. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A: Chem. 180:193-200. Beydoun, D., R. Amal, G. K. C. Low, and S. McEvoy. 2000b. Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution. J. Phys. Chem. B 104:4387-4396. Budevsky, O. 1979. Foundations of Chemical Analysis. Ellis Horwood Limited. Rochester. Butterworth, M. D., S. A. Bell, S. P. Armes, and A. W. Simpson. 1996. Synthesis and characterization of polypyrrole-magnetite-silica particles. J. Colloid Interf. Sci. 183:91-99. Cannas, C., A. Musinu, D. Peddis, and G. Piccaluga. 2004. New synthesis of ferrite-silica nanocomposites by a sol-gel auto-combustion. J. Nanopart. Res. 6:223-232. Cartwright, P. S. 1984. An update on reverse osmosis for metal finishing. Plat. Surf. Finish. p. 62-66. Chamberlain N. S. and R. V. Day. 1956. Technology of chrome reduction with sulfur dioxide. In Proceedings of the Eleventh Purdue Industrial Waste Conference. p. 129. Chambers, R. C., and C. L. Hill. 1990. Redox catalysis involving substrate photooxidation with catalyst regeneration by substrate reduction. Simultaneous oxidative C-H bond cleavage and reductive C-S bond cleavage in thioethers catalyzed by W10O324-. J. Am. Chem. Soc. 118:8427-8433. Chen, J., D. F. Ollis, W. H. Rulkens, and H. Bruning. 1999. Photocatalyzed deposition and concentration of soluble uranium(VI) from TiO2 suspensions. Colloid. Surface A 151:339-349. Colmenares, J. C., M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano. 2006. Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl. Catal. A: Gen. 306:120-127. Deng, B., and A. T. Stone. 1996. Surface-catalyzed chromium(VI) reduction: Reactivity comparisons of organic reductants and different oxide surfaces. Environ. Sci. Technol. 30:2484-2494. DeYoung, J. H., M. P. Lee, and B. R. Lipin. 1998. International strategic minerals inventory: Summary report-chromium: U.S. Geological Survey Circular 930-B. Doll, T. E., and F. H. Frimmel. 2005. Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. Water Res. 39:403-411. Eary, L. E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22:972-977. Ebner, A. D., J. A. Ritter, and J. D. Navratil. 2001. Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite-silica composite. Ind. Eng. Chem. Res. 40:1615-1623. Fendorf, S. E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67:55-71. Friesen, D. A., J. V. Headley, and C. H. Langford. 1999. The photooxidative degradation of N-Methylpyrrolidinone in the presence of Cs3PW12O40 and TiO2 colloid photocatalysts. Environ. Sci. Technol. 33:3193-3198. Friesen, D. A., L. Morello, J. V. Headley, and C. H. Langford. 2000. Factors influencing relative efficiency in photo-oxidations of organic molecules by Cs3PW12O40 and TiO2 colloidal photocatalysts. J. Photoch. Photobio. A 133:213-220. Fu, W., H. Yang, M. Li, M. Li, N. Yang, and G. Zou. 2005. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater. Lett. 59:3530-3534. Gkika, E., A. Troupis, A. Hiskia, and E. papaconstantinou. 2005. Photocatalytic reduction and recovery of mercury by polyoxometalates. Environ. Sci. Technol. 39:4242-4248. Gkika, E., A. Troupis, A. Hiskia, and E. Papaconstantinou. 2006. Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates. Appl. Catal. B: Environ. 62:28-34. Guo, Y., Y. Wang, C. Hu, Y. Wang, and E. Wang. 2000. Microporous polyoxometalates POMs/SiO2: Synthesis and photocatalytic degradation of aqueous organocholorine pesticides. Chem. Mater. 12:3501-3508. Guo, Y., D. Li, C. Hu, Y. Wang, E. Wang, Y. Zhoub, and S. Feng. 2001. Photocatalytic degradation of aqueous organocholorine pesticide on the layered double hydroxide pillared by Paratungstate A ion, Mg12Al6(OH)36(W7O24).4H2O. Appl. Catal. B: Environ. 30:337-349. Guo, Y., D. Li, C. Hu, E. Wang, Y. Zou, H. Ding, and S. Feng. 2002. Preparation and photocatalytic behavior of Zn/Al/W(Mn) mixed oxides via polyoxometalates intercalated layered double hydroxides. Micropor. Mesopor. Mat. 56:153-162. He, J., I. Ichinose, S. Fujikawa, T. Kunitake, and A. Nakao. 2002. A general, efficient method of incorporation of metal ions into ultrathin TiO2 films. Chem. Mater. 14:3493-3500. Hiskia, A., A. Mylonas, and E. Papaconstantinou. 2001. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 30:62-69. Hiskia, A., A. Troupis, S. Antonaraki, E. Gkika, P. Kormali, and E. Papaconstantinou. 2006. Polyoxometallate photocatalysis for decontaminating the aquatic environment from organic and inorganic pollutants. Intern. J. Environ. Anal. Chem. 86:233-242. Hu, J., I. M. C. Lo, and G. Chen. 2004. Removal of Cr(VI) by magnetite nanoparticle. Wat. Sci. Tech. 50:139-146. James, B. R., and R. J. Bartlett. 1983. Behavior of chromium in soils: V. Fate of organically-complexed Cr added to soil. J. Environ. Qual. 12:169-172. Jeejeebhoy, K. N., R. C. Chu, E. B. Marliss, G. R. Greenberg, and A. Bruce-Robertson. 1977. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am. J. Clin. Nutr. 30:531-538. Kendelewicz, T., P. Liu, C. S. Doyle, and G. E. B. Jr. 2000. Spectroscopic study of the reaction of aqueous Cr(VI) with Fe3O4(III)surfaces. Surf. Sci. 469:144-163. Khalil, L. B., W. E. Mourad, and M. W. Rophael. 1998. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl. Catal. B: Environ. 17:267-273. Khezami, L., and R. Capart. 2005. Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. J. Hazard. Mater. 123:223-231. Kimata, M., H. Atsuumi, A. Funakoshi, and M. Hasegawa. 2005. Preparation of titanium dioxide photocatalytic particles with magnetism and the photocatalytic activity. J. Chem. Eng. Jpn. 38:300-307. Ku, Y., and I. L. Jung. 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35:135-142. Kurinobu, S., K. Tsurusaki, Y. Natui, M. Kimata, and M. Hasegawa. 2007. Decomposition of pollutants in wastewater using magnetic photocatalyst particles. J. Magn. Magn. Mater. 310:e1025-e1027. Lee, S., J. Drwiega, D. Mazyck, C. Y. Wu, and W. M. Sigmund. 2006. Synthesis and characterization of hard magnetic composite photocatalyst-Barium ferrite/silica/titania. Mater. Chem. Phys. 96:483-488. Li, Q., Z. Kang, B. Mao, E. Wang, C. Wang, C. Tian, and S. Li. 2008. One-step polyoxometalate-assisted solvothermal synthesis of ZnO microspheres and their photoluminescence properties. Mater. Lett. Article in press. Lv, K., and Y. Xu. 2006. Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic Dye X3B on TiO2: The difference in the production of reactive species. J. Phys. Chem. B 110:6204-6212. Mao, B., Z. Kang, E. Wang, C. Tian, Z. Zhang, C. Wang, Y. Song, and M. Li. 2007. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process. J. Solid State Chem. 180:489-495. Marcus, R.A. 1965. The theory of electron-transfer reactions VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43:679-697. Massart, R. 1981. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE T. Magn. Mag-17:1247-1248. Mylonas, A., and E. Papaconstantinou. 1996. On the mechanism of photocatalytic degradation of chlorinated phenols to CO2 and HCl by polyoxometalates. J. Photoch. Photobio. A 94:77-82. Nakato, T., M. Kimura, S. Nakata, and T. Okuhara. 1998. Changes of surface properties and water-tolerant catalytic activity of solid acid Cs2.5H0.5PW12O40 in water. Langmuir 14:319-325. Nriagu, J.O. 1988. A silent epidemic of environmental metal poisoning. Environ. Pollut. 50:139-161. Okuhara, T., H. Watanabe, T. Nishimura, K. Inumaru, and M. Misono. 2000. Microstructure of cesium hydrogen salts of 12-tungstophosphoric acid relevant to novel acid catalysis. Chem. Mater. 12:2230-2238. Sparks, D.L. 1989. Kinetics of Soil Chemical Processes. Academic Press, New York. Pernyeszi, T., and I. Dékány. 2004. Photocatalytic degradation of hydrocarbons by bentonite and TiO2 in aqueous suspensions containing surfactants. Colloid. Surface A 230:191-199. Philipse, A.P., M. P. B. Bruggen, and C. Pathmamanoharan. 1994. Magnetic silica dispersions: Preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10:92-99. Pope, M.T., and J. Gideon M. Varga. 1966. Heteropoly blues. I. reduction stoichiometries and reduction potentials of some 12-tungstates. Inorg. Chem. 5:1249-1254. Qiu, W., Y. Zheng, and K. A. Haralampides. 2007. Study on a novel POM-based magnetic photocatalyst: Photocatalytic degradation and magnetic separation. Chem. Eng. J. 125:165-176. Rodenas, L. A. G., A. D. Weisz, G. E. Magaz, and M. A. Blesa. 2000. Effect of light on the electrokinetic behavior of TiO2 particles in contact with Cr(VI) aqueous solutions. J. Colloid Interface Sci. 230:181-185. Schwertmann, U., and R.M. Cornell. 1991. Iron oxides in the laboratory. Seigneur, C., and E. Constantinou. 1995. Chemical kinetic mechanism for atmospheric chromium. Environ. Sci. Technol. 29:222-231. Shchukin, D. G., A. I. Kulak, and D. V. Sviridov. 2002. Magnetic photocatalysts of the core-shell type. Photochem. Photobiol. Sci. 1:742-744. Shi, Y. L., W. Qiu, and Y. Zheng. 2006. Synthesis and characterization of a POM-based nanocomposite as a novel magnetic photocatalyst. J. Phys. Chem. Solids 67:2409-2418. Siemon, U., D. Bahnemann, J. J. Testa, D. Rodriguez, M.I. Litter, and N. Bruno. 2002. Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J. Photochem. Photobiol. A 148:247-255. Sun, B., E. P. Reddy, and P. G. Smirniotis. 2005. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ. Sci. Technol. 39:6251-6259. Tzou, Y. M., R. H. Loeppert, and M. K. Wang. 2002. Effect of organic complexing ligands on Cr(III) oxidation by MnOx. Soil Sci. 167:729-738. Tzou, Y. M., M. K. Wang, and R. H. Loeppert. 2003a. Effects of phosphate, HEDTA, and light sources on Cr(VI) retention by goethite. Soil Sediment Contam. 12:69-84. Tzou, Y. M., M. K. Wang, and R. H. Loeppert. 2003b. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides. Arch. Environ. Contam. Toxicol. 44:445-453. Watson, S., D. Beydoun, and R. Amal. 2002. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J. Photochem. Photobiol. A 148:303-313. Watson, S., J. Scott, D. Beydoun, and R. Amal. 2005. Studies on the preparation of magnetic photocatalysts. J. Nanopart. Res. 7:691-705. Xiuhua, Z., Z. Min, and W. Wei. 2004. Photocatalytic Degradation of Organic Pollutants in Water by Polyoxometalates. Department of Environmental Science and Engineering, Dalian Railway Institute, Dalian. Yasumori, A., H. Shinoda, Y. Kameshima, S. Hayashi, and K. Okada. 2001. Photocatalytic and photoelectrochemical properties of TiO2-based multiple layer thin film prepared by sol-gel and reactive-sputtering methods. J Mater. Chem. 11:1253-1257. Zhang, M., G. Gao, C. Q. Li, and F. Q. Liu. 2004. Titania-coated polystyrene hybrid microballs prepared with miniemulsion polymerization. Langmuir 20:1420-1424.
摘要: 
Environments, including atmosphere, lithosphere, hydrosphere and biosphere, influenced by toxic Cr(VI) have been widely studied. To decrease the toxicity and mobility of Cr(VI), the transformations of Cr(VI) to Cr(III) using reducing agents or catalysts are the most favorable processes due to their less impacts to the ecosystem. During the past decades, degradation of organic contaminants or transformation of inorganic contaminant to its solidic or less toxic forms induced by light energy through photosensitive materials, such as semiconductors, had received much scientific attentions. However, the photosensitive materials are either too small or dissoluble, which leads to the difficulty in recycling and reuse of the materials. Therefore, this study is aim to magnetize the photosensitive materials for enhancement of their applications in treating environmental pollutant, i.e., Cr(VI).
TiO2 and polyoxometalates (POMs) are both photocatalysts, which are magnetized and employed in the study. Briefly, magnetite was first synthesized as a core material followed by precipitating TiO2 and POM on it. To avoid the possible photodissolution of the core material due to electron-transfer from photocatalysts during the photo-reactions, a silica layer was sit between the magnetite and photocatalysts. The magnetized TiO2 and POM were denoted as MSTi and MSPOM, respectively, and reduction of 0.0385 mM Cr(VI) on these two photocatalysts was conducted at acidic solutions. The optimal reaction parameters were investigated, and the used MSTi and MSPOM were separated from solutions by a magnet for further use. The results indicated that 1 g L-1 MSTi could remove 0.0292 mmol g-1 Cr(VI) after 6 h reaction at pH 3 under UV illumination. The removal involves adsorption and reduction of Cr(VI) on MSTi. On the other hand, added Cr(VI) (i.e., 0.0385 mM) disappeared completely within 6 h when 1g L-1 MSPOM was added into a solution exposed to UV light at pH 1. The disappearance was attributed to Cr(VI) reduction on MSPOM. Because MSPOM exhibited a low adsorption ability of Cr(III), the Cr(III) predominate in solution once it was produced. It was found that Cr(VI) removal on MSTi would decrease slightly with increasing the times of use. This may be due to the limited adsorption sites on MSTi. However, MSPOM reduced Cr(VI) efficiently, and it would not adsorption the reductive products (i.e., Cr(III)). Therefore, its ability for Cr(VI) removal would not decrease with increasing the times of use.
Accordingly, it was found that MSTi and MSPOM can be readily recycled and reused without eliminating their efficiency for Cr(VI) removal. These two magnetized photocatalysts may be cost-effective and potential materials for treatment of Cr(VI) or other contaminants in wastewaters.

六價鉻的汙染問題已有許多文獻進行探討,其中將環境中的六價鉻還原轉變為毒性和移動性較低的三價鉻,是對生態環境較有利的過程,常見的六價鉻還原方法,主要有添加化學還原劑之化學還原法及利用光能促進反應的光催化還原法,近20年來,利用光催化劑的光敏感特性,吸收光能降解環境中之有機污染物或轉變無機污染物,降低其毒性,已有相當多的成果,然而催化劑分離回收的部份,常因催化劑粒徑細小或是其為水溶性物質而在應用上有困難,因此尚具有發展的空間。
TiO2和polyoxometalates(POMs)為具有半導體性質之光催化物質,將這兩種光敏感物質分別包覆於磁鐵礦外圍,藉由磁鐵礦之磁性增加材料回收的便利性,為避免外圍之TiO2和POMs對核心磁鐵礦造成光溶解反應,於兩者間插入一矽酸層,能有效隔絕電子的傳遞,因此本實驗為利用所合成之MSTiH和MSPOM對0.0385 mM Cr(VI)進行光還原反應,評估兩種材料的最佳反應條件並利用磁性回收材料,且於最適條件下測試材料的再利用效果。研究結果顯示,MSTiH在UV光照下以固液比1 g L-1 pH 3 背景液為0.01 M KCl環境中,反應6小時後可有效移除0.0292 mmol g-1的Cr(VI),移除方式為吸附和還原反應,MSPOM於UV光照下以固液比1 g L-1 pH 1背景液為 0.01 M KCl環境中,反應6小時後可完全移除懸浮液中的Cr(VI),主要以還原方式將Cr(VI)還原成Cr(III),且MSPOM僅具少量吸附量,因此還原後的Cr(III)主要存在於水體中。由反應過後之MSTiH和MSPOM的再利用評估結果可知,MSTiH的Cr(VI)移除量會隨使用次數的增加而減少,但還原量無顯著差異,造成移除量降低的原因主要為材料表面吸附位置隨使用次數增加而減少所致,MSPOM部分,對Cr(VI)移除量隨使用次數增加並無明顯差異,MSPOM主要是以還原方式移除Cr(VI),因此在重覆使用過程中,材料不會因吸附位置的減少而減少其對Cr(VI)的移除量。
MSTiH和MSPOM之磁性並未隨使用次數增加而減弱,連續使用後結果顯示,對Cr(VI)的移除量無明顯下降,且由於材料可回收再利用,在應用上可使成本降低並減少環境二次汙染的機會。
URI: http://hdl.handle.net/11455/28134
其他識別: U0005-2208200818302400
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.